scholarly journals Removal of Arsenic from Paint Industries Wastewater by Chemically Modified Low-Cost Adsorbent Derived from Sugar Cane Bagasse

2020 ◽  
Vol 06 (03) ◽  
pp. 1390-1398
Author(s):  
Melese Ayalew Yalew ◽  
Mariye Majo Shute ◽  
Tsehaye Yigzaw Tessema ◽  
Alemayehu Kiflu ◽  
Teka Girmay Hishe
2014 ◽  
Vol 67 (3) ◽  
pp. 297-302 ◽  
Author(s):  
Salatiel Assis Resende ◽  
Valdir Costa e Silva ◽  
Hernani Mota de Lima

The use of ammonium nitrate and fuel oil (ANFO) results in low cost blasting. Such costs may be further reduced by replacing fuel oil with alternative fuels such as biomass (biodiesel, rice straw, corn cob, sugar cane bagasse) and tires residue. This paper investigates the use of other fuels instead of fuel oil by measuring the detonation velocity (VOD) and verifying the importance of these fuels in an explosive mixture. Except for biodiesel, all the tests conducted for the mixture of ammonium nitrate and alternative fuels showed poor performance when compared with ANFO. The achieved percentage of detonation velocity (VOD) of the mixtures in relation to the ANFO were 55.4% for ammonium nitrate + rice straw, 64.9% for ammonium nitrate + corn cob, 70.1% for ammonium nitrate + sugar cane bagasse, 74.4% for ammonium nitrate + tires residue and 93.7% for ammonium nitrate + biodiesel. This study indicates that the methodology proposed can be applied as a reference for determination and preparation of explosive mixtures of fuel and oxidizing agents since in all the tests conducted the detonation of the charges occurred.


2013 ◽  
Vol 3 (1) ◽  
pp. 293-309 ◽  
Author(s):  
Palas Roy ◽  
Naba Kumar Mondal ◽  
Shreya Bhattacharya ◽  
Biswajit Das ◽  
Kousik Das

Biomass ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 11-28
Author(s):  
Danielle Munick de Albuquerque Fragoso ◽  
Henrique Fonseca Goulart ◽  
Antonio Euzebio Goulart Santana ◽  
Samuel David Jackson

In this work, a waste-derived lignin with abundant uncondensed linkages, using accessible solvents (acetone/water mixture) and low-cost catalysts showed successful depolymerization for the production of target molecules 4-ethylphenol, 4-propyl-2,6-dimethoxyphenol and 4-propyl-2-methoxyphenol. Lignin samples were obtained from sugar-cane bagasse residue by an organosolv process. Four alumina-based catalysts (Pt/Al2O3, Rh/Al2O3, Ni/Al2O3 and Fe/Al2O3) were used to depolymerize the sugar cane lignin (SCL) in an acetone/water mixture 50/50 v/v at 573 K and 20 barg hydrogen. This strategic depolymerisation-hydrogenolysis process resulted in the molecular weight of the SCL being reduced by half while the polydispersity also decreased. Catalysts significantly improved product yield compared to thermolysis. Specific metals directed product distribution and yield, Rh/Al2O3 gave the highest overall yield (13%), but Ni/Al2O3 showed the highest selectivity to a given product (~32% to 4-ethylphenol). Mechanistic routes were proposed either from lignin fragments or from the main polymer. Catalysts showed evidence of carbon laydown that was specific to the lignin rather than the catalyst. These results showed that control over selectivity could be achievable by appropriate combination of catalyst, lignin and solvent mixture.


2013 ◽  
Vol 28 (1-2) ◽  
pp. 161-170
Author(s):  
Megh Raj Pokhrel ◽  
Raghu Nath Dhital

Adsorption is one of the primary processes for removing arsenic from drinking water. This study focuses on developing inexpensive and effective adsorbents to remove arsenic from ground water. Eight different types of adsorbents were prepared. Some of these materials were chemically modified. The efficiency of percentage adsorption of arsenate, As (+III) on different materials were investigated at different pH, contact time and initial concentrations. Out of eight different types of adsorbents, the iron-loaded x ant hated orange waste (Fe-XOW) showed high efficiency for the removal of arsenic. It was found that approximately 83 % of arsenate, As (+III) and 87% of arsenate, As (+V) removal could be achieved at optimum pH of 10 and 4respectively. The significant effect of pH was in the range of 9 to12 for As (+III) and 3 to 5 for As (+V). Time dependency experiments for the arsenite uptake showed that the adsorption rate on Fe-XOW was fast initially for 1 hour, followed by slow attainment of equilibrium at 2.15 hour. Adsorption isotherm test showed that equilibrium adsorption data were better represented by Langmuir model than the Freundlich model and the maximum adsorption (qmax) for As (+III) onto Fe-XOW was found to be 53.47 mg/gm. The concentration of arsenic in water sample was determined by standard silver diethyldithiocarbamate spectrophotometric method (SDDC method).


2021 ◽  
Vol 11 (5) ◽  
pp. 2133
Author(s):  
Laura Landa-Ruiz ◽  
Miguel Angel Baltazar-Zamora ◽  
Juan Bosch ◽  
Jacob Ress ◽  
Griselda Santiago-Hurtado ◽  
...  

This research evaluates the behavior corrosion of galvanized steel (GS) and AISI 1018 carbon steel (CS) embedded in conventional concrete (CC) made with 100% CPC 30R and two binary sustainable concretes (BSC1 and BSC2) made with sugar cane bagasse ash (SCBA) and silica fume (SF), respectively, after 300 days of exposure to 3.5 wt.% MgSO4 solution as aggressive medium. Electrochemical techniques were applied to monitor corrosion potential (Ecorr) according to ASTM C-876-15 and linear polarization resistance (LPR) according to ASTM G59 for determining corrosion current density (icorr). Ecorr and icorr results indicate after more than 300 days of exposure to the sulfate environment (3.5 wt.% MgSO4 solution), that the CS specimens embedded in BSC1 and BSC2 presented greater protection against corrosion in 3.5 wt.% MgSO4 than the specimens embedded in CC. It was also shown that this protection against sulfates is significantly increased when using GS reinforcements. The results indicate a higher resistance to corrosion by exposure to 3.5 wt.% magnesium sulfate two times greater for BSC1 and BSC2 specimens reinforced with GS than the specimens embedding CS. In summary, the combination of binary sustainable concrete with galvanized steel improves durability and lifetime in service, in addition to reducing the environmental impact of the civil engineering structures.


2019 ◽  
Vol 32 (1) ◽  
pp. 73-78
Author(s):  
P. Janaki ◽  
R. Sudha ◽  
T.S. Sribharathi ◽  
P. Anitha ◽  
K. Poornima ◽  
...  

The adsorption performance of sulphuric acid treated low cost adsorbent synthesized by using Citrus limettioides peel as an effective raw material for the removal of cadmium(II) from water. The batch adsorption method was carried out to optimize some parameters like contact time, pH and adsorbent dose. The nonlinear isotherm equations were used to calculate the different isotherm constant of five isotherm models namely Freundlich, Langmuir, Dubinin-Radushkevich, Redlich-Peterson and Sips. The Langmuir monolayer adsorption capacity of chemically modified Citrus limettioides peel was found to be 287.60 mg g-1. The negative values of ΔGº and ΔHº showed that the adsorption process is spontaneous and exothermic.


2005 ◽  
Vol 36 (1) ◽  
pp. 31-39 ◽  
Author(s):  
Daniel Pasquini ◽  
Maria Teresa Borges Pimenta ◽  
Luiz Henrique Ferreira ◽  
Antonio Aprigio da Silva Curvelo

Sign in / Sign up

Export Citation Format

Share Document