Characterization of Al-Si-Mg/Al2O3 Nanocomposite Produced by Stir Casting Method

2015 ◽  
Vol 827 ◽  
pp. 294-299 ◽  
Author(s):  
Anne Zulfia ◽  
J. Salahuddin ◽  
Hafeizh E. Ahmad

Al-Si-Mg reinforced with Al2O3 nano particles have been made by stir casting method. The vortex produced by stirrer is to distribute the Al2O3 nano particles in the molten aluminium. The volume fraction of Al2O3 nano particles was varied from 0.5, 1, 2, 3, to 5 Vf%, while the addition of magnesium was 3 Vf% as wetting agent to improve the wettability between Al2O3 nano particle and Al-Si-Mg matrix. The effect of Al2O3 on characteristic of Al-Si-Mg composites was studied. It is found that the presence of Al2O3nano particle led to significant improve in mechanical properties, especially at addition of 0.5 Vf% Al2O3. The ultimate tensile strength reached to 154 MPa with 10.24 % elongation, while the hardness reached to 37.7 HRB followed by decrement in wear rate. The porosity level tend to increase with increasing of Al2O3 and caused decrement in mechanical properties.

2017 ◽  
Vol 898 ◽  
pp. 124-130 ◽  
Author(s):  
Shu Min Xu ◽  
Xin Ying Teng ◽  
Xing Jing Ge ◽  
Jin Yang Zhang

In this paper, the microstructure and mechanical properties of the as-cast and heat treatment of Mg-Zn-Nd alloy was investigated. The alloy was manufactured by a conventional casting method, and then subjected to a heat treatment. The results showed that the microstructure of as-cast alloy was comprised of α-Mg matrix and Mg12Nd phase. With increase of Nd content, the grain size gradually decreased from 25.38 μm to 9.82 μm. The ultimate tensile strength and elongation at room temperature of the Mg94Zn2Nd4 alloy can be reached to 219.63 MPa and 5.31%. After heat treatment, part of the second phase dissolved into the magnesium matrix and the grain size became a little larger than that of the as-cast. The ultimate tensile strength was declined by about 2.5%, and the elongation was increased to 5.47%.


Crystals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 573
Author(s):  
Jing Zhao ◽  
Dezheng Liu ◽  
Yan Li ◽  
Yongsheng Yang ◽  
Tiansheng Wang ◽  
...  

The microstructures and mechanical properties of ausrolled nanobainite steel, after being tempered at temperatures in the range of 200−400 °C, were investigated in this study. After being tempered, bainitic ferrite is coarsened and the volume fraction of retained austenite is reduced. The hardness and ultimate tensile strength decrease sharply. The impact energy, yield strength, and elongation increase with elevated tempered temperature at 200–300 °C but decrease with elevated tempered temperature when the samples are tempered at 350 °C and 400 °C. The fracture appearance of all the samples after impact tests is a brittle fracture. The variation of the mechanical properties may be due to partial recovery and recrystallization.


2013 ◽  
Vol 747-748 ◽  
pp. 245-250 ◽  
Author(s):  
Jun Luo ◽  
Rong Shi Chen ◽  
En Hou Han

The microstructure and mechanical properties of as-cast Mg-3Sn-xGd (x=0, 0.2, 1 wt.%) alloys were studied by using OM, SEM, EDX, XRD etc. With the increase of Gd, the formation of Mg2Sn phase was impeded and the MgSnGd phase formed and the volume fraction of this new phase obviously increased. The ultimate tensile strength and elongation to failure increased with dilute Gd addition but sharply decreased when the Gd addition comes to 1.34 wt.%. The possible reasons for the variation in microstructure and mechanical properties were discussed.


Author(s):  
Edgar Lara-Curzio ◽  
R. Trejo ◽  
K. L. More ◽  
P. J. Maziasz ◽  
B. A. Pint

The effects of stress, temperature and time of exposure to microturbine exhaust gases on the mechanical properties and corrosion resistance of alloys HR-120® and 230® was investigated at turbine exhaust temperatures between 620°C and 760°C. It was found that the ultimate tensile strength and ductility of alloy 230® decreased by 30% and 60%, respectively, after 500 hours exposure at 752°C. At the lowest exposure temperature of 679°C the ultimate tensile strength and ductility decreased by 10% and 25%, respectively. The ultimate tensile strength and ductility of HR-120® alloy decreased by 15% and 50%, respectively, after 500 hours exposure at 745°C. At the lowest exposure temperature of 632°C the ultimate tensile strength and ductility decreased by 10% and 23%, respectively. The microstructural changes associated with exposure to microturbine exhaust gases are analyzed and discussed.


2015 ◽  
Vol 817 ◽  
pp. 439-443 ◽  
Author(s):  
Rui Dong ◽  
Ai Min Zhao ◽  
Ran Ding ◽  
Jian Guo He ◽  
Han Jiang Hu

The microstructures, mechanical properties and retained austenite characteristics of TRIP-aided steels with three different heat treatments were studied in this paper. The results indicated that the designed annealing treatments resulted in completely different matrices and the morphologies of second phase, and a significant difference in mechanical properties. The TAM steel was found to have fine annealed martensite lath matrix and inter lath acicular retained austenite, and possessed an excellent combination of strength and elongation which attributed to the highest retained austenite volume fraction and carbon concentration. For TPF steel, the higher instability and lower carbon content of retained austenite and the soft matrix resulted in the lowest ultimate tensile strength and total elongation. While in TBF steel, the stability of retained austenite was lower than that in TAM steel but higher than that in TPF steel. The ultimate tensile strength of TBF was significantly higher than the TAM and TPF steels, but the ductility of TBF steel was lower than TAM steel.


Crystals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1228
Author(s):  
Honglin Zhang ◽  
Zhigang Xu ◽  
Laszlo J. Kecskes ◽  
Sergey Yarmolenko ◽  
Jagannathan Sankar

The present work mainly investigated the effect of extrusion temperatures on the microstructure and mechanical properties of Mg-1.3Zn-0.5Ca (wt.%) alloys. The alloys were subjected to extrusion at 300 °C, 350 °C, and 400 °C with an extrusion ratio of 9.37. The results demonstrated that both the average size and volume fraction of dynamic recrystallized (DRXed) grains increased with increasing extrusion temperature (DRXed fractions of 0.43, 0.61, and 0.97 for 300 °C, 350 °C, and 400 °C, respectively). Moreover, the as-extruded alloys exhibited a typical basal fiber texture. The alloy extruded at 300 °C had a microstructure composed of fine DRXed grains of ~1.54 µm and strongly textured elongated unDRXed grains. It also had an ultimate tensile strength (UTS) of 355 MPa, tensile yield strength (TYS) of 284 MPa, and an elongation (EL) of 5.7%. In contrast, after extrusion at 400 °C, the microstructure was almost completely DRXed with a greatly weakened texture, resulting in an improved EL of 15.1% and UTS of 274 MPa, TYS of 220 MPa. At the intermediate temperature of 350 °C, the alloy had a UTS of 298 MPa, TYS of 234 MPa, and EL of 12.8%.


2022 ◽  
Vol 23 (1) ◽  
pp. 329-338
Author(s):  
Gerges Naguib

Mechanical properties of polyester/glass fiber reinforced by multiwalled carbon nanotubes (MWCNTs) were studied. MWCNTs nano particles are mixed within resin in various weight fractions of 0.1, 0.2, 0.4 and 0.6 % using sonication. E-Glass fiber (chopped strand mat) is used in various weight fractions within the composite like 80/20 wt%, 70/30 wt%, 50/50 wt% to fabricate polyester/CSM/MWCNTs composites. The effect of the addition of MWCNTs nanoparticles on the mechanical characteristics such as hardness and tensile strength were investigated. The effect of various E-glass fiber chopped strand mat (CSM) wt.% reinforcement is also investigated. A scanning electron microscope (SEM) was used to show the nanocomposites morphological properties such as reinforcement orientation and the bonding between matrix and fiber. It was found that the addition of 0.4 wt% MWCNTs improves the mechanical properties of composites, especially the 50 wt% polyester / 50 wt% CSM composite. The tensile strength improved by 39.8%, and the hardness improved by 38%. ABSTRAK: Ciri-ciri mekanikal bagi poliester / gelas fiber diperkukuh dengan dinding berbilang karbon nanotiub (MWCNTs) dikaji. Partikel nano MWCNT telah dicampur ke dalam resin pelbagai berat pada pecahan 0.1, 0.2, 0.4 dan 0.6 % menggunakan sonikasi. Gentian Kaca-E (potongan lembaran) telah digunakan dalam pelbagai pecahan berat dalam komposit 80/20 wt%, 70/30 wt%, 50/50 wt% bagi menghasilkan komposit poliester/CSM/MWCNT. Kesan penambahan nanopartikel MWCNT pada ciri-ciri mekanikal seperti kekerasan dan kekuatan tensil diuji. Kesan pelbagai gentian Kaca-E (potongan lembaran) (CSM) wt.% bersama agen pengukuh turut dikaji. Pengimbas Mikroskop Elektron (SEM) digunakan bagi menilai ciri-ciri morfologi komposit nano seperti orientasi pengukuh dan ikatan antara matrik dan gentian. Dapatan kajian menunjukkan dengan penambahan sebanyak 0.4 wt% MWCNT dapat memperbaiki ciri-ciri mekanikal komposit terutama komposit campuran (50 wt% polyester / 50 wt% CSM). Ketahanan tensil meningkat sebanyak 39.8%, dan kekerasan telah bertambah sebanyak 38%.


Aluminium is considered as one of the material of future. Aluminium based metal matrix comes with a fascinating set of material properties which combines strength with less weight. Due to this these Al-base metal matrix finds their application in aerospace and automotive sector. Many types of reinforcements are done with Aluminium since last many years to check the improvement in its performance. Therefore many reinforcements are found suitable to form the composite which finds variety of novel applications. In this present investigation MMCs are fabricated with Al 6061 alloy and reinforced with granite particulate of 2-3 microns size in different compositions are used to see their effect on the mechanical properties of Al6061 alloy. The vortex method of stir casting is used to from the metal matrix wherein reinforcements are forced into the vortex created by the molten metal by means of mechanical stirrer. The castings prepared by above method are machined with turning operation on lathe. Improvement in Ultimate tensile strength, Yield strength, % Elongation and Hardness are found with increasing the percentage of granite particulates..


2018 ◽  
Vol 14 (1) ◽  
pp. 61
Author(s):  
Kosim Abdurohman ◽  
Aryandi Marta

Vacuum infusion is a manufacturing method to improve mechanical properties of composite. Before apply this in LSU structure, it should be experimented using tensile test to know mechanical properties of the composite. Tensile test is an experimental to know tensile strength, modulus of elasticity, and failure modes of composite. Experimental process of CFRP composite using unidirectional carbon fiber and polyester matrix was done using vacuum infusion technology, strart from specimens preparation until testing steps. Manufacturing results gave the values of composite density and thickness; mass and volume fraction of fiber and matrix materials. Specimens and testing process are refer to ASTM D3039 tensile test standard for composite matrix polymers. The testing results showed 1011.67 MPa ultimate tensile strength, 59074.96 MPa modulus of elasticity, and SGV (long spliting, gage, various) failure mode . ABSTRAKVacuum infusion merupakan salah satu metode manufaktur yang digunakan untuk meningkatkan sifat mekanik komposit. Untuk mengaplikasikan metode ini dalam pembuatan struktur LAPAN Surveillance UAV (LSU), perlu diketahui terlebih dahulu sifat mekanik dari komposit hasil metode ini secara eksperimen. Salah satu eksperimen yang dilakukan yaitu pengujian tarik untuk mendapatkan tensile strength, modulus elastisitas, dan failure mode yang terjadi pada komposit. Eksperimen dilakukan terhadap komposit CFRP menggunakan material serat karbon searah (UD) 0⁰ dan matriks poliester dibuat dengan metode vacuum infusion mulai dari tahap preparasi sampai tahap pengujian. Dari hasil manufaktur didapat nilai densitas dan ketebalan komposit serta fraksi massa dan fraksi volume material penyusun komposit. Spesimen dan proses pengujian mengikuti standar ASTM D3039 yang merupakan standar pengujian tarik untuk komposit dengan matriks polimer. Hasil pengujian menunjukkan nilai ultimate tensile strength 1011,67 MPa, modulus elastisitas 59074,96 MPa, dan failure mode SGV (Long Spliting, Gage, Various).


2018 ◽  
Vol 3 (5) ◽  
pp. 71
Author(s):  
Joseph Temitope Stephen ◽  
Adeyinka Adebayo ◽  
Gbenga Joshua Adeyemi

This paper reports the influence of solidification rate and stress-relief annealing on the mechanical properties of cast 6063 Aluminium alloy (Al6063). Ingots of Al6063 were melted and then cast using sand and metal moulds. Some of the cast samples were heat treated and then cooled in natural air. Tensile test, hardness test, impact test and microstructural analysis were carried out on the samples. The results show substantial changes in the mechanical properties of the specimens. The ultimate tensile strength, yield strength and hardness percentage elongation of cast Al6063 increases with the use of casting method with high thermal conductivity and reduces when annealing is carried out on the specimens. The ultimate tensile strength of 146.7 MPa and 163.5 MPa were recorded for sand mould and metal mould samples, respectively and the values decreases by 10.3% and 7.5% for the respective moulds. In contrast, the values of impact strength and percentage elongation of cast Al6063 rod improved with the increase in thermal conductivity of casting method and annealing operation. The ductile increased by 51.01% and 45.82% for sand mould and metal mould samples, respectively, after they were annealed. Furthermore, microstructural analysis of cast Al6063 rod revealed a fine-grained structure with increase in thermal conductivity of casting method used; however, the annealing process encouraged grain growth as a result of the stress being relieved from the samples.


Sign in / Sign up

Export Citation Format

Share Document