scholarly journals ANALISIS NILAI INDEKS KEHIJAUAN (NDVI) PADA POLA RUANG KOTA AMBON, PROVINSI MALUKU

2019 ◽  
Vol 3 (1) ◽  
pp. 55-67
Author(s):  
Jan Willem Hatulesila ◽  
Gun Mardiatmoko ◽  
Irwanto Irwanto

Green Open Space is a component of landscaping that greatly affects urban air both directly and indirectly. The ideal standard minimum area of ​​green open space is at least 30% of the total area of ​​the city.The study used a spatial analysis method through the approach to calculating the Normalized Difference Vegetation Index (NDVI) for vegetation cover. Overlay analysis of GIS vegetation cover maps with the Ambon city spatial pattern map, has produced a map of the city green open spatial model, which shows a picture of existing corridors of green open space patterns, building spatial patterns, and non-vegetation spatial patterns (vacant land) .The results of the analysis of the green open space model map recommend the need for areas with urban park areas, park spots areas, and tree corridor areas planted on either side of the road. Inventory method, analysis of spatial and observations carried out at nine sampling locations, showed that the location of Ambon City's green open space was ± 1.115.900 m2 or 111,59 ha, with cover of understorey vegetation (grasses and saplings) 16,31 ha. Estimated carbon content of understorey vegetation (grasses and saplings) 52,49 kg/ha and 883 kg/ha of pole and tree vegetation.  Normalized Difference Vegetation Index (NDVI) in nine sampling locations of Ambon City's green open space, for the area of vegetation cover is 61.58 ha or 58.31%, building area 39.63 ha or 37.52% and vacant land 4.40 ha or 4.17%.

2021 ◽  
Author(s):  
Anita Zaitunah ◽  
Samsuri ◽  
Fauziah Sahara

Abstract Vegetation plays an important role in maintaining the environmental quality of urban areas. Increase in population and development of cities has led to land conversion with lesser vegetated areas. Land cover change analysis in urban areas is needed, especially for urban regional planning with green open space consideration. This research was conducted to analyze urban vegetation cover and its changes in two sub-districts of Medan between the years 1999 and 2019. Normalized difference vegetation index (NDVI) and change analysis were conducted in the research. The diversity of plant within this areas was observed. The results showed changes in vegetation cover areas in the mentioned years. In 1999, most of the areas were under a highly dense vegetation class while in 2019, they were under a low-density vegetation class. This indicates a decrease in vegetation cover due to changes to non-vegetation cover or land cover areas with less vegetation. There are a diverse of plants within the area such as paddy, cassava, corn etc and also many tree species. It is recommended to optimize the land by replanting in the area with no or less vegetation to maintain the environmental quality.


2020 ◽  
Vol 13 (1) ◽  
pp. 19
Author(s):  
Lauren E. H. Mathews ◽  
Alicia M. Kinoshita

A combination of satellite image indices and in-field observations was used to investigate the impact of fuel conditions, fire behavior, and vegetation regrowth patterns, altered by invasive riparian vegetation. Satellite image metrics, differenced normalized burn severity (dNBR) and differenced normalized difference vegetation index (dNDVI), were approximated for non-native, riparian, or upland vegetation for traditional timeframes (0-, 1-, and 3-years) after eleven urban fires across a spectrum of invasive vegetation cover. Larger burn severity and loss of green canopy (NDVI) was detected for riparian areas compared to the uplands. The presence of invasive vegetation affected the distribution of burn severity and canopy loss detected within each fire. Fires with native vegetation cover had a higher severity and resulted in larger immediate loss of canopy than fires with substantial amounts of non-native vegetation. The lower burn severity observed 1–3 years after the fires with non-native vegetation suggests a rapid regrowth of non-native grasses, resulting in a smaller measured canopy loss relative to native vegetation immediately after fire. This observed fire pattern favors the life cycle and perpetuation of many opportunistic grasses within urban riparian areas. This research builds upon our current knowledge of wildfire recovery processes and highlights the unique challenges of remotely assessing vegetation biophysical status within urban Mediterranean riverine systems.


2021 ◽  
Vol 30 (1) ◽  
pp. 148-158
Author(s):  
Haneen Adeeb ◽  
Yaseen Al-Timimi

Soil salinity is one of the most important problems of land degradation, that threatening the environmental, economic and social system. The aim of this study to detect the changes in soil salinity and vegetation cover for Diyala Governorate over the period from 2005 to 2020, through the use of remote sensing techniques and geographic information system. The normalized difference vegetation index (NDVI) and salinity index (SI) were used, which were applied to four of the Landsat ETM+ and Landsat OLI satellite imagery. The results showed an increase in soil salinity from 7.27% in the period 2005–2010 to 27.03% in 2015–2020, as well as an increase in vegetation from 10% to 24% in the same period. Also the strong inverse correlation between the NDVI and the SI showed that vegetation is significantly affected and directly influenced by soil salinity changes


2018 ◽  
Vol 7 (4) ◽  
pp. 297-306 ◽  
Author(s):  
Amal Y. Aldhebiani ◽  
Mohamed Elhag ◽  
Ahmad K. Hegazy ◽  
Hanaa K. Galal ◽  
Norah S. Mufareh

Abstract. Wadi Yalamlam is known as one of the significant wadis in the west of Saudi Arabia. It is a very important water source for the western region of the country. Thus, it supplies the holy places in Mecca and the surrounding areas with drinking water. The floristic composition of Wadi Yalamlam has not been comprehensively studied. For that reason, this work aimed to assess the wadi vegetation cover, life-form presence, chorotype, diversity, and community structure using temporal remote sensing data. Temporal datasets spanning 4 years were acquired from the Landsat 8 sensor in 2013 as an early acquisition and in 2017 as a late acquisition to estimate normalized difference vegetation index (NDVI) changes. The wadi was divided into seven stands. Stands 7, 1, and 3 were the richest with the highest Shannon index values of 2.98, 2.69, and 2.64, respectively. On the other hand, stand 6 has the least plant biodiversity with a Shannon index of 1.8. The study also revealed the presence of 48 different plant species belonging to 24 families. Fabaceae (17 %) and Poaceae (13 %) were the main families that form most of the vegetation in the study area, while many families were represented by only 2 % of the vegetation of the wadi. NDVI analysis showed that the wadi suffers from various types of degradation of the vegetation cover along with the wadi main stream.


Author(s):  
Román Alejandro Canul-Turriza ◽  
Francisco Javier Barrera-Lao ◽  
Gabriela Patricia Aldana Narváez

This paper presents the identification of heat islands in the city of San Francisco de Campeche, period 1990 - 2020 and their relationship with changes in the vegetation cover areas. To identify the heat islands in the city, 6 Landsat 5 (TM), 7 (TM) and 8 (OIL) images were obtained from the USGS database (http://earthexplorer.usgs.gov/). In geographic information software, soil temperature was calculated from a mathematical algorithm applied to thermal infrared bands 6 and 10, in addition, the Normalized Difference Vegetation Index (NDVI) was calculated, in order to find a relationship between changes in temperature and vegetation cover. It was found that the green areas have reduced their surface by more than 50% and the soil temperature has increased up to 7 ° C


2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Alemayehu Abera ◽  
Teshome Yirgu ◽  
Abera Uncha

Abstract Background Resettlement has been conceived as a viable solution to the continual impoverishment and destitution of Ethiopian rural communities. However, it has considerable impacts on natural resources of the environment at destination areas. This study was carried out to evaluate impact of resettlement scheme on vegetation cover and its implications on conservation in Chewaka district of Ethiopia. Methods The study utilized ArcGIS10.3, ERDAS Imagine 9.1, Landsat imageries of 2000, 2009, 2018 and socio-economic data to analyze the LULC of the district. Normalized Difference Vegetation Index was employed to detect vegetation cover changes of the area. The study was conducted on the seven kebeles of Chewaka district and the total households of the sample kebeles are 3340. Through multistage sampling procedure a total of 384 households were selected from sample kebeles. Data were collected using questionnaires, GPS, interviews, focus group discussions and field observations. The collected data were analyzed both quantitatively and qualitatively. Results The results showed that Chewaka district has undergone substantial LULC change since population resettlement in the area. A rapid reduction of woodland (34.6%), forest (59.9%), grassland (50.5%) and bareland (46.8%) took place between 2000 and 2018, while built-up areas and cultivated lands have expanded at an average rate of 90.7 and 1515.7 ha/year respectively. The results of NDVI revealed that the extent of dense and sparse vegetation cover have decreased by 26.1% and 20.6% respectively, whereas non-vegetation cover has increased by 14,340.2 ha during the study period. It was found that rapid population growth following resettlement program, farmland and settlement expansion, deforestation, human-induced forest fire, lack of land use plan, unwise utilization and low management practices were the major factors that underpin the observed changes in the area. Conclusions Resettlement scheme has resulted in the depletion and dynamics of vegetation cover in Chewaka district. Therefore, the study suggests urgent attention on conservation of the remaining vegetation resources for sustainable utilization.


ARCTIC ◽  
2009 ◽  
Vol 61 (1) ◽  
pp. 1 ◽  
Author(s):  
Gita J. Laidler ◽  
Paul M. Treitz ◽  
David M. Atkinson

Arctic tundra environments are thought to be particularly sensitive to changes in climate, whereby alterations in ecosystem functioning are likely to be expressed through shifts in vegetation phenology, species composition, and net ecosystem productivity (NEP). Remote sensing has shown potential as a tool to quantify and monitor biophysical variables over space and through time. This study explores the relationship between the normalized difference vegetation index (NDVI) and percent-vegetation cover in a tundra environment, where variations in soil moisture, exposed soil, and gravel till have significant influence on spectral response, and hence, on the characterization of vegetation communities. IKONOS multispectral data (4 m spatial resolution) and Landsat 7 ETM+ data (30 m spatial resolution) were collected for a study area in the Lord Lindsay River watershed on Boothia Peninsula, Nunavut. In conjunction with image acquisition, percent cover data were collected for twelve 100 m × 100 m study plots to determine vegetation community composition. Strong correlations were found for NDVI values calculated with surface and satellite sensors, across the sample plots. In addition, results suggest that percent cover is highly correlated with the NDVI, thereby indicating strong potential for modeling percent cover variations over the region. These percent cover variations are closely related to moisture regime, particularly in areas of high moisture (e.g., water-tracks). These results are important given that improved mapping of Arctic vegetation and associated biophysical variables is needed to monitor environmental change.


2011 ◽  
Vol 3 (3) ◽  
pp. 157
Author(s):  
Daniel Rodrigues Lira ◽  
Maria do Socorro Bezerra de Araújo ◽  
Everardo Valadares De Sá Barretto Sampaio ◽  
Hewerton Alves da Silva

O mapeamento e monitoramento da cobertura vegetal receberam consideráveis impulsos nas últimas décadas, com o advento do sensoriamento remoto, processamento digital de imagens e políticas de combate ao desmatamento, além dos avanços nas pesquisas e gerações de novos sensores orbitais e sua distribuição de forma mais acessível aos usuários, tornam as imagens de satélite um dos produtos do sensoriamento remoto mais utilizado para análises da cobertura vegetal das terras. Os índices de cobertura vegetal deste trabalho foram obtidos usando o NDVI - Normalized Difference Vegetation Index para o Agreste central de Pernambuco indicou 39,7% de vegetação densa, 13,6% de vegetação esparsa, 14,3% de vegetação rala e 10,5% de solo exposto. O NDVI apresentou uma caracterização satisfatória para a classificação do estado da vegetação do ano de 2007 para o Agreste Central pernambucano, porém ocorreu uma confusão com os índices de nuvens, sombras e solos exposto, necessitando de uma adaptação na técnica para um melhor aprimoramento da diferenciação desses elementos, constituindo numa recombinação de bandas após a elaboração e calculo do NDVI.Palavras-chave: Geoprocessamento; sensoriamento remoto; índice de vegetação. Mapping and Quantification of Vegetation Cover from Central Agreste Region of Pernambuco State Using NDVI Technique ABSTRACTIn recent decades, advanced techniques for mapping and monitoring vegetation cover have been developed with the advent of remote sensing. New tools for digital processing, the generation of new sensors and their orbital distribution more accessible have facilitated the acquisition and use of satellite images, making them one of the products of remote sensing more used for analysis of the vegetation cover. The aim of this study was to assess the vegetation cover from Central Agreste region of Pernambuco State, using satellite images TM / LANDSAT-5. The images were processed using the NDVI (Normalized Difference Vegetation Index) technique, generating indexes used for classification of vegetation in dense, sparse and scattered. There was a proportion of 39.7% of dense vegetation, 13.6% of sparse vegetation, 14.3% of scattered vegetation and 10.5% of exposed soil. NDVI technique has been used as a useful tool in the classification of vegetation on a regional scale, however, needs improvement to a more precise differentiation among levels of clouds, shadow, exposed soils and vegetation. Keywords: Geoprocessing, remote sensing, vegetation index


2021 ◽  
Vol 936 (1) ◽  
pp. 012038
Author(s):  
Benedict ◽  
Lalu Muhamad Jaelani

Abstract Java is Indonesia’s and the world’s most populous island. The increase in population on the island of Java reduces the area of forest and other vegetation covers. Landslides, floods, and other natural disasters are caused by reduced vegetation cover. Furthermore, it has the potential to lead to the extinction of flora and fauna. The Normalized Difference Vegetation Index (NDVI) can be used to monitor the vegetation cover. This study analyzes the NDVI changes value from 2005 to 2020 using Terra and Aqua MODIS image data processed using Google Earth Engine. Processing was carried out in some stages: down-setting, performing NDVI processing, calculating monthly average NDVI, calculating annual average NDVI, and analyzing. From the study results, the NDVI value of Terra and Aqua MODIS data has a solid but imperfect correlation coefficient due to differences in orbital time which causes differences in solar zenith angle, sensor viewing angle, and azimuth angle. Then from this study, it was found that overall, changes in vegetation density cover on the island of Java decreased, which was indicated by the NDVI decline rate of -0.00047/year. The most significant decrease in NDVI value occurred in the period 2015–2016, covering an area of 13994.630 km2, and the most significant increase in NDVI occurred in the period 2010–2011, covering an area of 2256.101 km2.


2021 ◽  
Vol 52 (3) ◽  
pp. 620-625
Author(s):  
Y. K. Al-Timimi

Desertification is one of the phenomena that threatening the environmental, economic, and social systems. This study aims to evaluate and monitor desertification in the central parts of Iraq between the Tigris and Euphrates rivers through the use of remote sensing techniques and geographic information systems. The Normalized difference vegetation index NDVI and the crust index CI were used, which were applied to two of the Landsat ETM + and OLI satellite imagery during the years 1990 and 2019. The research results showed that the total area of ​​the vegetation cover was 2620 km2 in 1990, while there was a marked decrease in the area Vegetation cover 764 km2 in 2019, accounting for 34.8% (medium desertification) and 10.2% (high desertification), respectively. Also, the results showed that sand dunes occupied an area of ​​767 km2 in 1990, while the area of ​​sand dunes increased to 1723 km2 in 2019, with a rate of 10.2%) medium desertification (and 22.9% (severe desertification), respectively. It was noted that the overall rate of decrease in vegetation cover was 21.33 km2year-1 while the overall rate of increase in ground erosion in the area is 10.99 km2year-1.


Sign in / Sign up

Export Citation Format

Share Document