Justification of parameters and technology of drilling and blasting operations to ensure the required lumpiness

Author(s):  
V.V. Egorov ◽  
A.N. Volokitin ◽  
N.V. Ugolnikov ◽  
A.V. Sokolovsky

The practice of mining and blasting operations both during the development of a mineral deposits, and at the mine design stage, often involves the question of selecting the technology options and operation parameters. Virtually all recommendations for selecting the best production option are based on minimizing the total costs for the entire technological cycle of mining activities. In most cases the optimal technology and parameters of mining and blasting operations depend on the commercial, maximum permissible and average size of the blasted rock mass, which are determined by the type and capacity of the mining haulage equipment. Therefore, the total costs will mainly depend on the commercial or average lump size and the cost of mining transport equipment. The article presents a methodology to select the best technological option for the drilling and blasting operations to obtain the optimal lumpiness (particle-size distribution) of the blasted rock. The optimal range of lumpiness is defined by the total minimum costs for the entire production cycle of mining and processing of minerals. In order to select a rational technology of drilling and blasting and to calculate their parameters it is proposed to take into account the integral criteria of lumpiness in addition to the average lump size. For this purpose, we studied the particle size distribution in the rock mass and in the muck piles.

Author(s):  
К.V. Babii

Purpose: to investigate the influence of the parameters of explosive destruction of mining blocks of complex geological structure on the production processes of mining and processing of iron ore. Determine the stability of the escarpment slopes during excavation of rocks in ore mining blocks with barren layers. Results. The analysis of geophysical methods for studying the structure of deposits. It is proposed to use the magnetic susceptibility method for well logging. The structure of mining blocks of a complex geological structure with contact zones "ore - host rocks" was investigated. It has been proven that for the effective use of equipment for the pre-enrichment of ore in a quarry there are conditions: the regulation of the granulometric composition of the rock mass and the reduction of ore splices with overburden rocks. It is proposed to use a charge design of an explosive with inert gaps or a charge section of a cumulative action in the explosive destruction of rocks with contact zones. The influence of parameters of explosive destruction of mining blocks of complex geological structure on the formation of technological complexes of ore beneficiation in quarries is established. The dependence of the factor of stability of slopes of slopes during excavation of rocks, depending on the geological parameters. Scientific novelty. The regularities of changes in the parameters of the ore mass flow (medium piece and oversize) are established depending on the diameter of the drilling-blast wells, which allows you to adjust the particle size distribution. Practical significance. Based on the established patterns and improvement of the design of well charges, their influence on the quality of the blown-up rock mass in the ledges of a complex geological structure has been substantiated, which makes it possible to form the corresponding technological complexes of ore dressing in quarries. The result is a significant increase in the productivity of the technological equipment of the mining enterprise and the profitability of iron ore mining. Key words: quarry, ledge, complex geological structure, downhole charge structures, particle size distribution.


Author(s):  
Lei Chen ◽  
Zhenyu Chen ◽  
Shuaishuai Liu ◽  
Biaofeng Gao ◽  
Junwei Wang

The effects of particle size distribution on compacted density of as-prepared spherical lithium iron phosphate (LFP) LFP-1 and LFP-2 materials electrode for high-performance 18650 Li-ion batteries are investigated systemically, while the selection of two commercial materials LFP-3 and LFP-4 as a comparison. The morphology study and physical characterization results show that the LFP materials are composed of numerous particles with an average size of 300–500 nm, and have well-developed interconnected pore structure and a specific surface area of 13–15 m2/g. For CR2032 coin-type cell, the specific discharge capacities of the LFP-1 and LFP-2 are about 165 mAh/g at 0.2 C. For 18650 batteries, results indicate that the LFP-3 material has the highest compacted density of 2.52 g/cm3 at a concentrated particle size distribution such as D10 = 0.56 μm, D50 = 1.46 μm, and D90 = 6.53 μm. By mixing two different particle sizes of LFP-1 and LFP-2, the compaction density can be increased significantly from 1.90 g/cm3 to 2.25 g/cm3.


1992 ◽  
Vol 266 ◽  
Author(s):  
June D. Passaretti ◽  
Trudy D. Young ◽  
Mick J. Herman ◽  
D. Bruce Evans

AbstractThis paper discusses the use of a new rhombohedral precipitated calcium carbonate (PCC) morphology and existing PCC morphologies in wood free, wood containing, and recycled paper. The new material has properties that mimic TiO2 with respect to morphology, particle size, particle size distribution, and surface area. TiO2 is widely used by the paper industry as a functional filler for opacity and brightness. The new PCC rhombohedral morphology can be used in place of TiO2 for many applications greatly reducing the cost of production.The physical properties of the new PCC morphology as well as application as a paper filling pigment will be discussed.


REAKTOR ◽  
2014 ◽  
Vol 15 (2) ◽  
pp. 132 ◽  
Author(s):  
Nurul - Widiastuti ◽  
Farhanah Thalib ◽  
Didik Prasetyoko ◽  
Hamzah Fansuri

Abstract PARTICLE SIZE AND CRYSTAL CONFORMATION OF SYNTHESIZED ZEOLITE-A WITH TETRAPROPYLAMMONIUM HYDROXIDE (TPAOH) ADDITION. The aims of this research is to study the effect of tetrapropylammonium hydroxide (TPAOH) concentration in the synthesis of zeolite A to its physical characteristics such as crystallinity, crystal conformation and average crystal size. The zeolite A was synthesized with composition 3.165 Na2O : 1.000 Al2O3 : 1.926 SiO2 : 128 H2O : x TPAOH where x was 0; 0.0385; 0.0577; 0.0770; 0.1540 and 4.1602. The zeolite was crystalized under hydrothermal condition in a stainless steel autoclave at 100°C for 5 hours. The resulting crystal was washed with distilled water until pH 8 and then dried in an oven at 80oC for 24 hours. FT-IR and XRD analysis results show that the synthesized zeolite A at x = 4.1602 has the lowest crystallinity. It is estimated due to the mass of TPAOH was four times higger than the mass of zeolite framework components (Si and Al). SEM and PSD (Particle Size Distribution) analysis results show that TPAOH concentration affected the crystal conformation and the average size of zeolite A particles. The formation of chained crystal conformation was caused by the electrostatic interactions between TPA+ and negatively charge of zeolite framework. In addition, the particel size of the synthesized zeolite A at x = 0.1540 was 2.024 µm which was smaller than the particel size of the synthesized zeolite A without TPAOH, which was 3.534 µm. Keywords: average size of particles; crystal conformation; TPAOH; zeolite A Abstrak Penelitian ini bertujuan untuk mempelajari pengaruh konsentrasi TPAOH (Tetrapropilamonium hidroksida) dalam sintesis zeolit A terhadap sifat fisikanya yang meliputi kekristalan, konformasi kristal dan ukuran rata-rata kristal yang terbentuk. Pada penelitian   ini   zeolit A   disintesis    dengan komposisi 3,165 Na2O : 1 Al2O3 : 1,926 SiO2 :128 H2O: x TPAOH. Konsentrasi TPAOH divariasikan dengan nilai x adalah 0; 0,0385; 0,0577; 0,0770; 0,1540 dan 4,1602. Metode hidrotermal digunakan dalam penelitian ini dengan kondisi suhu  hidrotermal 100°C dan waktu kristalisasi selama 5 jam dengan pH pencucian 8. Hasil karakterisasi menggunakan FT-IR (Fourier Transform – Infrared Spectroscopy) dan XRD (X-Ray Diffraction)  menunjukkan bahwa zeolit A yang disintesis dengan x = 4,1602 memiliki kekristalan terendah. Hal ini diperkirakan terjadi karena masa TPAOH yang digunakan empat kali lebih besar daripada masa penyusun zeolit (Si dan Al). Berdasarkan hasil karakterisasi menggunakan SEM (Scanning Electron Microscopy) dan PSD (Particle Size Distribution), dapat diketahui bahwa TPAOH berpengaruh terhadap konformasi kristal dan rata-rata ukuran kristalnya.  Terbentuknya konformasi kristal seperti rantai disebabkan oleh adanya interaksi elektrostatik antara muatan positif pada TPA+ dan muatan negatif dari kerangka zeolit. Zeolit A yang disintesis dengan x = 0,1540 memiliki ukuran partikel rata-rata 2,024 µm yang lebih kecil dari daripada zeolit A tanpa TPAOH yaitu sebesar 3,534 µm. Kata kunci : ukuran partakel rata-rata; konformasi kristal; TPAOH; zeolite A 


Author(s):  
N. I. Urbanovich ◽  
K. E. Baranovsky ◽  
E. V. Rozenberg ◽  
V. G. Dashkevich ◽  
V. G. Lugin

The article presents the waste generated during the production of hot‑dip galvanizing. The results of the study of the particle size distribution of zinc dust showed that its particle size distribution in the size range of particles ≤ 250 μm, the proportion of which is 87 wt.%, corresponds to the fractional composition of standard powder zinc. In ash, the number of particles up to 250 microns in size is approximately 35 wt.%. Studies of the chemical and phase composition of the hot‑dip galvanized waste – zinc dust made it possible to establish that the zinc content of the waste approximately corresponds to powder zinc (GOST 12601). The proportion of pure zinc in dust is 95 %. Chemical and phase analyzes of the ash have shown that it contains zinc oxides, pure zinc and zinc chlorides. Zinc chlorides, in turn, can be a supplier of chlorine ions in thermal diffusion galvanizing. In this regard, it is of interest to use ash in the composition of the powder composition as an activating and zinc‑containing component. The results of the analysis of the conducted studies of hot‑dip galvanizing wastes – zinc dust and soot show that they are promising for their use as components in saturating mixtures in the production of zinc coatings by chemical‑thermal treatment. This will reduce the cost of galvanized products and ensure the recycling of zinc into industrial circulation.


Minerals ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 407 ◽  
Author(s):  
Jiangyu Wu ◽  
Meimei Feng ◽  
Jingmin Xu ◽  
Peitao Qiu ◽  
Yiming Wang ◽  
...  

It is of great significance for engineering safety, economic benefits, environmental protection, and sustainable development to investigate the strata stability in filling mining with cemented rockfill. Consequently, this paper is based on a specific coal mine where we applied the fully-mechanized longwall mining and filling and designed a cemented rockfill material for which the particles satisfied the Talbot gradation. Uniaxial and triaxial compression experiments were carried out on the cemented rockfill specimen, which obtained the relations between the mechanical parameters (Poisson ratio, elastic modulus, compressive strength, cohesive force, internal friction angle, and tensile strength) and the particle size distribution of the aggregate. The excavation and filling processes in the coal seam were simulated based on the numerical software FLAC3D. The characteristics of the displacement and stress fields of the strata when the goaf was filled by cemented rockfill with different granule gradations were discussed. The influences of the particle size distribution and mining distance on the maximum subsidence displacement of the coal seam roof, internal stress of the backfill, and the stress of the rock mass in the coalface were analyzed. The feasibility and effectiveness of the filling mining with cemented rockfill to protect the integrity of the overlying strata were discussed. The results showed that optimizing the particle size distribution of the aggregate in cemented rockfill could increase the loading capacity of the backfill to improve the filling effect, effectively control the strata movement, and decrease the stress of rock mass in the coalface to reduce the potential danger.


2012 ◽  
Vol 535-537 ◽  
pp. 964-968
Author(s):  
Zhi Gang Chen ◽  
Hou Cai Liu ◽  
Wen Hui Liu ◽  
Zhen Sheng Wang ◽  
Zhen Hua Chen

In this paper, preparation of large spray deposited aluminum alloy tube was investigated. The shape and particle size distribution of over-sprayed powders together with structure of deposits were analyzed. The results show that the over-sprayed powders resulted from particles missing, spurting and rebounding. The particle size distribution was non-standard normal distribution, the particle size of the great majority was within 150μm and the average size was 50μm. The residual pores in deposits came into being when inter-particle space could not be filled with enough liquid during spray deposition. The as-deposited preform with rough surface was a coalesced bulk of deposited particles. The rotate speed of substrate and scan speed of atomizer together with spray stripe width should satisfy any certain relationship to obtain a qualified tube preform. Substrate preheating and surface treatment and residual stress control were very important for preparing a large preform.


Author(s):  
Yu. M. Domnina ◽  
S. A. Kedik ◽  
V. V. Suslov ◽  
E. A. Shnyak ◽  
S. S. Kryukova

The work is dedicated to the production of polymer suspensions using ultrasonic dispergation in a flow mode. An apparatus was designed on the basis of a Russian flow ultrasonicator. The applicability of this apparatus for obtaining aqueous dispersions of polymeric micro- and nanoparticles by means of one-step emulsification followed by solvent extraction / evaporation was demonstrated. The influence of the process parameters on the characteristics of the obtained suspensions was studied. The particle size distribution and the average size of the resulting particles were evaluated by using Delsa Nano S, Beckman Coulter laser analyzer (USA). The dependence of the average diameter of the suspension particles on the stabilizer concentration and on the change of the phases feed rate was shown. When polyvinyl alcohol was used as a stabilizer in the concentration range 0.5-2%, the average particle size was 30-400 nm. The feed rates of the aqueous and organic phases affect the nature of the particle size distribution.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Zaisheng Zhu ◽  
Zhenquan He ◽  
Guosheng Gai

AbstractPotassium-bearing shale is being developed as a potential alternative to potash for use in fertilisers. The first step in this process is to reduce its particle size by crushing. This paper explores whether roasting pre-cracked potassium-bearing shale can improve the quality of the resulting ultrafine product. Analysis of the particle size distribution of the ultrafine product and its fractal dimension found contradictory results: the minimum particle size distribution was obtained by roasting for 2.5 h, while the minimum fractal dimension was obtained by roasting for 1 h. Fuzzy comprehensive evaluation was conducted with three indicators—(1) the weight of the − 10 μm product, (2) the fractal dimension of the particle size distribution, and (3) d97—to obtain a unique combination of indicators that reflects the quality and quantity of the products. The weights of the three indicators were calculated by an analytic hierarchical process to be 0.69, 0.149 and 0.161, respectively. Roasting pre-cracked shale for 2–2.5 h was found to improve the mean values of the fuzzy comprehensive evaluation indicators by about 0.07. However, the cost increased from 2.82 RMB to ≥ 10.08 RMB, which is not feasible for widespread industrial implementation.


Sign in / Sign up

Export Citation Format

Share Document