Specific Features of a Mini-Plant to Prepare Non-Explosive Components of Emulsion Explosives

Author(s):  
V.A. Tikhonov ◽  
V.V. Radkov ◽  
T.S. Morozova

Extensive engineering experience accumulated at AZOTTECH helps the company to develop and implement new types of equipment. In conditions when capital construction and infrastructure development are not possible in hard-to-reach areas of the country, this equipment provides mobility and availability in mining operations. This article presents a new type of equipment for preparation of non-explosive components of blasting compounds, i.e. a modular mobile plant or a mini-plant. The technological process and the main associated equipment are described. Calculation of efficient fuel consumption for autonomous heat and power supply is made. Recommendations on the optimal operation modes for this type of equipment with the distribution of the workload per the main process operations are provided. The mini-plant can be optimized both in terms of cost parameters, and customer process conditions. Its efficiency is on the same level with that of a modular plant for preparation of non-explosive components of blasting compounds. The advantages of a mobile plant offer more application possibilities in any mining conditions. The use of mini-plants will help not only large operations, but also small service companies to increase their competitiveness and reduce costs when planning blasting operations already at the beginning of the construction phase of hazardous production facilities, and in certain cases to avoid construction of large-size complexes.

2012 ◽  
Vol 27 (4) ◽  
pp. 707-713 ◽  
Author(s):  
Jukka Pekka lsoaho ◽  
Suvi Tarkkanen ◽  
Raimo Alen ◽  
Juha Fiskari

Abstract Softwood-based kraft mill bleaching effluents from the initial bleaching stages D0 and E1 (the bleaching sequence being D0E 1D 1 E2D2) were treated by the oxidative Fenton method (H20rFeS04) to decompose organic pollutants contammg adsorbable organic halogens (AOX). Experiments designed using the Taguchi method were applied to predict the process conditions that would result in a cost-effective and adequate removal of AOX. In addition to the composition and concentration of the reagents (H202 and Fe2+), the main process parameters selected were temperature and reaction time, while pH was adj usted to an approximate value of 4 (the volumetric ratio of the mixed effluents D0:E 1 was 3 :2). The results indicated that an AOX removal of about 70% for this mixture ( corresponding to about 50% for the mill) was achieved when the eftluent samples were treated for 60 min at 70°C with H202 and Fe2+ at a concentration of 1 600 mg/1 and 28 mg/1, respectively.


2008 ◽  
Vol 2008 ◽  
pp. 1-7 ◽  
Author(s):  
Satu Ojala ◽  
Ulla Lassi ◽  
Paavo Perämäki ◽  
Riitta L. Keiski

Catalytic oxidation is a feasible and affordable technology for solvent emission abatement. However, finding optimal operation conditions is important, since they are strongly dependent on the application area of VOC incineration. This paper presents the results of the laboratory experiments concerning four most central parameters, that is, effects of concentration, gas hourly space velocity (GHSV), temperature, and moisture on the oxidation of n-butyl acetate. Both fresh and industrially aged commercial Pt/Al2O3catalysts were tested to determine optimal process conditions and the significance order and level of selected parameters. The effects of these parameters were evaluated by computer-aided statistical experimental design. According to the results, GHSV was the most dominant parameter in the oxidation of n-butyl acetate. Decreasing GHSV and increasing temperature increased the conversion of n-butyl acetate. The interaction effect of GHSV and temperature was more significant than the effect of concentration. Both of these affected the reaction by increasing the conversion of n-butyl acetate. Moisture had only a minor decreasing effect on the conversion, but it also decreased slightly the formation of by products. Ageing did not change the significance order of the above-mentioned parameters, however, the effects of individual parameters increased slightly as a function of ageing.


2019 ◽  
Vol 12 ◽  
pp. 117862211988048 ◽  
Author(s):  
Erick R Bandala ◽  
Oscar M Rodriguez-Narvaez

Cavitation is considered a high energy demanding process for water treatment. For this study, we used a simple experimental setup to generate cavitation at a low pressure (low energy) and test it for hydroxyl radical production using a well-known chemical probe as a hydroxyl radical scavenger. The conditions for generating the cavitation process (eg, pressure, flow velocity, temperature, and other significant variables) were used to degrade model contaminants, an azo dye and an antibiotic. The amount of hydroxyl radicals generated by the system was estimated using N,N-dimethyl-p-nitrosoaniline (pNDA) as hydroxyl radical scavenger. The capability of hydrodynamic cavitation (HC) to degrade contaminants was assessed using Congo red (CR) and sulfamethoxazole (SMX) as model contaminants. Different chemical models were analyzed using UV-visible spectrophotometry (for pNDA and CR) and high-performance liquid chromatography (HPLC) (for SMX) after HC treatment under different process conditions (ie, pressure of 13.7 and 10.3 kPa, and flow rates of 0.14 to 3.6 × 10−4 m3/s). No pNDA bleaching was observed for any of the reaction conditions tested after 60 minutes of treatment, which suggests that there was no hydroxyl radical generation during the process. However, 50% degradation of CR and 25% degradation of SMX were observed under the same process conditions, comparable with previously reported results. These results suggest that the process is most likely thermally based rather than radically based, and therefore, it can degrade organic pollutants even if no hydroxyl radicals are produced. Hydrodynamic cavitation, either alone or coupled with other advanced water technologies, has been identified as a promising technology for removing organic contaminants entering the water cycle; however, more research is still needed to determine the specific mechanisms involved in the process and the optimal operation conditions for the system.


2020 ◽  
Vol 10 (7) ◽  
pp. 2520 ◽  
Author(s):  
Taek-Eon Jeong ◽  
Dong-Hyuck Kam ◽  
Cheolhee Kim

Self-piercing riveting (SPR) is one of the mechanical joining processes, and its application to Al/Fe dissimilar materials combination, which is hard to weld, is expanding in the automotive industry. The main process parameters in SPR are types of rivet and die, setting force, and rivet setting speed. Previously, the relationship between the main process parameters and output parameters such as cross-sectional characteristics and joint strength has been studied to optimize the SPR process. In practical applications, there are unexpected and abnormal process conditions such as poor fit-up, angular misalignment, edge offset distance, and inaccurate setting and pre-clamping forces, and their effects on the joining quality have not been discussed. In this study, parametric investigation was performed using an experimental design on SPR joints for 1 mm-thick high strength steel (590 DP) and 2 mm-thick Al alloy (Al5052-H32). The main effect of each level of the abnormal process parameters on the output parameters was statistically investigated, and the analysis of variance was performed for each abnormal process parameter. In the range of abnormal process conditions applied, the set force was the most significant factor affecting the output parameters, and the effect of pre-clamping force on the output parameters was the least significant.


2014 ◽  
Vol 940 ◽  
pp. 179-183
Author(s):  
Li Hong Zhao ◽  
Cheng Xi Lei ◽  
Zhong Wen Xing ◽  
Bin Wu

Stiffness is a very important property of automobile panel, especially for high-strength thinning sheet due to personnel security and energy conservation on auto industry. It is difficult to study because of the complexity streamline feature of auto body. An experiment method for determining stiffness was presented. The experiment study models of which based on the hyperboloid shallow shells that could represent automobile panel’s surface features was established. The criterion and research technique of automobile panel stiffness were introduced. The experiment research works of effects of two main process conditions on stiffness which blank holding force (BHF) and boundary condition during the stiffness test were obtained. All conclusions provided a particularly effective process guidance and technical approach in the automobile panel production.


2021 ◽  
Author(s):  
Niels Krausch ◽  
Jong Woo Kim ◽  
Sergio Lucia ◽  
Sebastian Gross ◽  
Tilman Barz ◽  
...  

Bioprocess development is commonly characterized by long development times, especially in the early screening phase. After promising candidates have been pre-selected in screening campaigns, an optimal operating strategy has to be found and verified under conditions similar to production. Cultivating cells with pulse-based feeding and thus exposing them to oscillating feast and famine phases has shown to be a powerful approach to study microorganisms closer to industrial bioreactor conditions. In view of the large number of strains and the process conditions to be tested, high-throughput cultivation systems provide an essential tool to sample the large design space in short time. We have recently presented a comprehensive platform, consisting of two liquid handling stations coupled with a model-based experimental design and operation framework to increase the efficiency in High Throughput bioprocess development. Using calibrated macro-kinetic growth models, the platform has been successfully used for the development of scale-down fed-batch cultivations in parallel mini-bioreactor systems. However, it has also been shown that parametric uncertainties in the models can significantly affect the prediction accuracy and thus the reliability of optimized cultivation strategies. To tackle this issue, we implemented a multi-stage Model Predictive Control (MPC) strategy to fulfill the experimental objectives under tight constraints despite the uncertainty in the parameters and the measurements. Dealing with uncertainties in the parameters is of major importance, since constraint violation would easily occur otherwise, which in turn could have adverse effects on the quality of the heterologous protein produced. Multi-stage approaches build up scenario tree, based on the uncertainty that can be encountered and computing optimal inputs that satisfy the constrains despite of such uncertainties. Using the feedback information gained through the evolution along the tree, the control approach is significantly more robust than standard MPC approaches without being overly conservative. We show in this study that the application of multi-stage MPC can increase the number of successful experiments, by applying this methodology to a mini-bioreactor cultivation operated in parallel.


2015 ◽  
Vol 639 ◽  
pp. 485-491 ◽  
Author(s):  
Davide Campanella ◽  
Gianluca Buffa ◽  
Livan Fratini ◽  
Marion Merklein

Solid Bonding based welding processes allow to obtain defect free joints with low residual stress and low distortion. However, the engineering and optimization of solid bonding processes is difficult and requires a large number of time and cost consuming test trials. In this way, proper numerical models are essential tools permitting effective process design. The aim of this research was the comparison of the material process conditions during two different manufacturing processes taking advantage of the same metallurgical phenomenon, namely solid bonding. Linear Friction Welding, used to weld non-axisymmetric components and Accumulative Roll Bonding, used to increase the mechanical properties of sheet metals, were considered. Numerical models were set up, validated and used to design the process by studying the complex material behavior during the solid bonding of different aluminum alloys. An implicit approach was used for the Linear Friction Welding and Accumulative Roll Bonding processes, leading to the understanding of the main process variables influence on the field variables distribution and the occurrence of actual bonding.


Membranes ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 52 ◽  
Author(s):  
Machodi Mathaba ◽  
Michael Olawale Daramola

Acid mine drainage is an environmental problem associated with mining operations and activities. Its treatment is essential to achieving environmental sustainability. In this study, a polyethersulphone (PES) membrane infused with chitosan is proposed as a point-of-use material for treating acid mine drainage (AMD). The composite material explored the synergetic effect between chitosan and polymer, particularly considering the effect of the degree of deacetylation (DD) of chitosan on the performance of membrane. Chitosan was produced from chitin under various synthesis process conditions and infused within polyethersulphone membrane. The results obtained show that chitosan with the highest degree of deacetylation was achieved with a temperature of 100 °C and NaOH concentration of 40 wt%. Increasing the temperature above 100 °C started degrading already formed or exposed amine groups, thus, reducing the DD of the chitosan sample. The contact angle and porosity analysis indicated that the hydrophilic nature of the membrane was enhanced with increasing DD of the chitosan. The performance of the membranes was conducted on a Dead-end filtration cell using synthetic acid mine drainage. The results showed that the flux and rejection of the membrane was enhanced with increasing degree of deacetylation. PES 5 and PES 1 were blended with chitosan having the highest (95.97%) and lowest (33.93%) degree of deacetylation, respectively. PES 5 reported pure water flux of 123 L/m2·h and PES 1 was recorded as 104 L/m2·h. Similarly, the rejection of the membrane was improved with increasing chitosan’s degree of deacetylation. PES 5 had higher rejection and PES 1 had the least rejection. Maximum rejection for the contaminants was determined as 98.05, 97.39, 96.25, 95.24 and 80.34% for Mn2+, Fe2+, Mg2+ and Ca2+ and SO42−, respectively. The results obtained show that chitosan’s degree of deacetylation has a positive effect on the performance of polyethersulphone membrane during the treatment of acid mine drainage.


2018 ◽  
Vol 33 (1) ◽  
pp. 82-94
Author(s):  
Rita Ferritsius ◽  
Olof Ferritsius ◽  
Jan Hill ◽  
Anders Karlström ◽  
Karin Eriksson

Abstract This paper is part two of a study on a CD 82 TMP chip refiner where relations between changes in the process conditions and changes in the properties of the produced pulp are investigated. Focus is on the ratio between tensile index and specific energy consumption when results from five tests are compared. Pulp properties were measured for composite pulp samples taken from the refiner blow line. Residence times and pulp consistencies were estimated by use of the extended entropy model. Clearly, an increase in specific energy does not necessarily implicate an increase in strength properties of the pulp produced. It is of high importance to have access to information about the refining zone conditions when searching for an optimal operation point in terms of the ratio between tensile index and specific energy. In these tests, this ratio had a maximum at about 55 % measured blow line consistency. Unfavourable operating conditions were identified at high pulp consistencies, especially after the FZ, where pulp consistencies well above 70 % were observed. The estimated residence time for each refining zone responded differently when applying changes in production rate, plate gaps and dilution water flow rates. In conclusion, the results associated with estimated pulp consistencies where easier to interpret compared with results for residence times, implying that additional tests are required for the latter variable. In addition to tensile index, pulp properties like freeness, Somerville shives and light scattering coefficient were included in the analysis.


2018 ◽  
Vol 170 ◽  
pp. 01108
Author(s):  
Alexandr Orlov ◽  
Irina Chubarkina

The article considers new models of strategic territorial planning combined with infrastructure development that contribute to a more compact urban development. The main methodological provisions of the Blue Ocean strategy are analyzed and presented in the form of the value approach. A city planning unit called "urban block" is used as a strategic solution in relation to this strategy and construction of a "compact city". Factor space is formed taking into account the value for the consumer within the framework of the value approach. A three-factor model is created to improve the efficiency of investment and construction project implementation. The efficiency of the construction project is assessed. The value approach can be used both for projects that presuppose only budgetary financing and projects that have a commercial component. The provisions set forth in the article can be used to solve problems concerning enhancement of the urban environment comfort and creation of a new infrastructure. In general, it will contribute to the modernization of capital construction funds and creation of new productive forces.


Sign in / Sign up

Export Citation Format

Share Document