Effect of Housing Condition and Diet on the Gut Microbiota of Weanling Immunocompromised Mice

Author(s):  
Colleen E Thurman ◽  
Molly M Klores ◽  
Annie E Wolfe ◽  
William T Poueymirou ◽  
Ellen M Levee ◽  
...  

Gastrointestinal microbiota are affected by a wide variety of extrinsic and intrinsic factors. In the husbandry of laboratorymice and design of experiments, controlling these factors where possible provides more reproducible results. However, themicrobiome is dynamic, particularly in the weeks immediately after weaning. In this study, we characterized the baselinegastrointestinal microbiota of immunocompromised mice housed under standard conditions for our facility for 6 weeks afterweaning, with housing either in an isolator or in individually ventilated cages and a common antibiotic diet (trimethoprimsulfamethoxazole). We compared these conditions to a group fed a standard diet and a group that was weaned to a standard diet then switched to antibiotic diet after 2 weeks. We found no clear effect of diet on richness and α diversity of the gastrointestinal microbiota. However, diet did affect which taxa were enriched at the end of the experiment. The change to antibiotic diet during the experiment did not convert the gastrointestinal microbiome to a state similar to mice consistently fed antibiotic diet, which may highlight the importance of the initial post-weaning period in the establishment of the gastrointestinal microbiome. We also observed a strong effect of housing type (isolator compared with individually ventilated cage) on the richness, α diversity, β diversity, and taxa enriched over the course of the experiment. Investigating whether the diet or microbiome affects a certain strain’s phenotype is warranted in some cases. However, our findings do not suggest that maintaining immunocompromised mice on antibiotic feed has a clinical benefit when potential pathogens are operationally excluded, nor does it result in a more consistent or controlled microbiome in the post-weaning period.

2021 ◽  
Vol 8 ◽  
Author(s):  
Leandro Dias Teixeira ◽  
Monica F. Torrez Lamberti ◽  
Evon DeBose-Scarlett ◽  
Erol Bahadiroglu ◽  
Timothy J. Garrett ◽  
...  

Obesity is considered a primary contributing factor in the development of many diseases, including cancer, diabetes, and cardiovascular illnesses. Phytochemical-rich foods, associated to healthy gastrointestinal microbiota, have been shown to reduce obesity and associated comorbidities. In the present article, we describe the effects of the probiotic Lactobacillus johnsonii N6.2 and blueberry extracts (BB) on the gut microbiota and lipid profile of rats under a high-fat (HF) or low-calorie (LC) diet. L. johnsonii was found to increase the levels of long chain fatty acids (LCFA) in the serum of all animals under HF diet, while reduced LCFA concentrations were observed in the adipose tissue of animals under HF diet supplemented with BB extracts. All animals under HF diet also showed lower protein levels of SREBP1 and SCAP when treated with L. johnsonii. The gut microbiota diversity, β-diversity was significantly changed by L. johnsonii in the presence of BB. A significant reduction in α-diversity was observed in the ileum of animals under HF diet supplemented with L. johnsonii and BB, while increased α-diversity was observed in the ilium of animals under LC diet supplemented with L. johnsonii or BB. In summary, L. johnsonii and BB supplementation induced significant changes in gut microbiota diversity and lipid metabolism. The phospholipids pool was the lipidome component directly affected by the interventions. The ileum and colon microbiota showed clear differences depending on the diet and the treatments examined.


2020 ◽  
Author(s):  
Emilie Vangrinsven ◽  
Fastrès Aline ◽  
Taminiau Bernard ◽  
Frédéric Billen ◽  
Daube Georges ◽  
...  

Abstract Background – Extrinsic and intrinsic factors have been shown to influence nasal microbiota (NM) in humans. Very few studies investigated the association between nasal microbiota and factors like facial/body conformation, age, and environment in dogs. Objectives are to investigate variations in NM in healthy dogs with different facial and body conformations and to assess the influence of age and living environment. A total of 46 dogs of different age, living environment and from 3 different breed groups were recruited: 22 meso-/dolichocephalic medium to large breed dogs, 12 brachycephalic dogs and 12 terrier breeds. The nasal bacterial microbiota was assessed through sequencing of 16S rRNA gene (V1-V3 regions) amplicons.Results – We showed major differences in the NM composition together with increased richness and α-diversity in brachycephalic dogs, compared to meso-/dolichocephalic dogs and dogs from terrier breeds. We failed to detect any effect of age or environment.Conclusion – Healthy brachycephalic breeds and their unique facial conformation is associated with a distinct NM profile. Description of the NM in healthy dogs serves as a foundation for future researches assessing the changes associated with disease and the modulation of NM communities as a potential treatment.


Author(s):  
Ting-Yun Lin ◽  
Szu-Chun Hung

Abstract Background Protein-energy wasting (PEW) is prevalent and associated with adverse outcomes in patients with chronic kidney disease (CKD). However, the pathogenesis of PEW in CKD patients has not been fully identified. The gut microbiota has been implicated in the regulation of host metabolism and energy balance. Therefore, we aimed to explore the association between nutritional status and the composition of the gut microbiota in hemodialysis patients. Methods Gut microbial diversity and taxonomy were examined in 88 hemodialysis patients with PEW (n = 22) and normal nutritional status (n = 66) who were matched 1:3 for age and sex. Nutritional status was assessed by using the 7-point subjective global assessment (SGA) score (1–3 = severe PEW; 4–5 = moderate PEW and 6–7 = normal nutrition). The gut microbiota was assessed by 16S ribosomal RNA gene sequencing. Results Patients with normal nutritional status had a significantly higher body mass index and physical activity and serum albumin levels, but significantly lower levels of inflammatory cytokines than patients with PEW. The most striking finding was that the α-diversity of the gut microbiota was significantly lower in patients with PEW. In a multivariate analysis, the SGA score was independently and positively associated with α-diversity (P = 0.049). Patients with or without PEW were different with respect to the principal coordinate analysis of β-diversity. Notably, the relative abundance of Faecalibacterium prausnitzii, a butyrate-producing bacteria, was markedly reduced in patients with PEW. Conclusion In hemodialysis patients, PEW assessed with the SGA was associated with gut dysbiosis.


Author(s):  
Wenqing Yang ◽  
Liang Tian ◽  
Jiao Luo ◽  
Jialin Yu

Objective The delivery mode is considered to be a significant influencing factor in the early gut microbiota composition, which is associated with the long-term health of the host. In this study, we tried to explore the effects of probiotics on the intestinal microbiota of C-section neonates. Study Design Twenty-six Chinese neonates were enrolled in this study. The neonates were divided into four groups: VD (natural delivery neonates, n = 3), CD (cesarean-born neonates, n = 9), CDL (cesarean-born neonates supplemented with probiotic at a lower dosage, n = 7), and CDH (cesarean-born neonates supplemented with probiotic at a higher dosage, n = 7). Fecal samples were collected on the 3rd, 7th, and 28th day since birth. The V3–V4 region of the 16S ribosomal ribonucleic acid gene was sequenced by next-generation sequencing technology. Results The α-diversity of the intestinal microbiota of cesarean delivery neonates was significantly lower than that of the naturally delivered neonates on the 28th day (p = 0.005). After supplementation with probiotics for 28 days, the α-diversity and the β-diversity of the gut flora in the cesarean-born infants (CDL28 and CDH28) was similar to that in the vaginally delivery infants. Meanwhile, the abundances of Lactobacillus and Bifidobacterium were significantly increased since the 3rd day of probiotic supplementation. Besides, the sustained supplementation of probiotics to neonates would help improve the abundance of the operational taxonomic units in several different Clusters of Orthologous Groups of proteins. Conclusion This study showed that probiotics supplementation to cesarean-born neonates since birth might impact the diversity and function of gut microbiota. Key Points


2020 ◽  
Vol 287 (1931) ◽  
pp. 20200824 ◽  
Author(s):  
Inga Leena Angell ◽  
Knut Rudi

Despite the fact that infant gut colonization patterns have been extensively studied, we have limited knowledge about the underlying ecological processes. This particularly relates to the ecological choice of nutrient utilization strategies. The aim of the current study was therefore to compare empirically determined nutrient utilization strategies with that expected from a combinatorial game theory model. Observational analyses for 100 mother–child pairs suggested mother–child transmission of specialists with the potential to use few nutrients. Generalists, on the other hand, with the potential to use many nutrients, peaked at three months of age for the children. The level of generalists was gradually replaced with specialists up to 12 months of age. Game theory simulation revealed a competitive advantage of generalists in an expanding population, while more specialized bacteria were favoured with the maturation of the population. This suggests that the observed increase in generalists in the three-month-old children could be due to an immature, expanding gut microbiota population while the increase of specialists at 12 months could be due to population maturation. The simulated and empirical data also correspond with respect to an increased α diversity and a decreased β diversity with the number of simulations and age, respectively. Taken together, game theory simulation of nutrient utilization strategies can therefore provide novel insight into the maturation of the human gut microbiota during infancy.


2021 ◽  
Vol 9 ◽  
Author(s):  
Xiaojun Zhuang ◽  
Caiguang Liu ◽  
Shukai Zhan ◽  
Zhenyi Tian ◽  
Na Li ◽  
...  

Background and Aim: Accumulating evidence have implicated gut microbiota alterations in pediatric and adult patients with inflammatory bowel disease (IBD); however, the results of different studies are often inconsistent and even contradictory. It is believed that early changes in new-onset and treatment-naïve pediatric patients are more informative. We performed a systematic review to investigate the gut microbiota profiles in pediatric IBD and identify specific microbiota biomarkers associated with this disorder.Methods: Electronic databases were searched from inception to 31 July 2020 for studies that observed gut microbiota alterations in pediatric patients with IBD. Study quality was assessed using the Newcastle–Ottawa scale.Results: A total of 41 original studies investigating gut microbiota profiles in pediatric patients with IBD were included in this review. Several studies have reported a decrease in α-diversity and an overall difference in β-diversity. Although no specific gut microbiota alterations were consistently reported, a gain in Enterococcus and a significant decrease in Anaerostipes, Blautia, Coprococcus, Faecalibacterium, Roseburia, Ruminococcus, and Lachnospira were found in the majority of the included articles. Moreover, there is insufficient data to show specific microbiota bacteria associated with disease activity, location, and behavior in pediatric IBD.Conclusions: This systematic review identified evidence for differences in the abundance of some bacteria in pediatric patients with IBD when compared to patients without IBD; however, no clear overall conclusion could be drawn from the included studies due to inconsistent results and heterogeneous methodologies. Further studies with large samples that follow more rigorous and standardized methodologies are needed.


Nutrients ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 2564 ◽  
Author(s):  
Iñaki Robles-Vera ◽  
María Callejo ◽  
Ricardo Ramos ◽  
Juan Duarte ◽  
Francisco Perez-Vizcaino

Inadequate immunologic, metabolic and cardiovascular homeostasis has been related to either an alteration of the gut microbiota or to vitamin D deficiency. We analyzed whether vitamin D deficiency alters rat gut microbiota. Male Wistar rats were fed a standard or a vitamin D-free diet for seven weeks. The microbiome composition was determined in fecal samples by 16S rRNA gene sequencing. The vitamin D-free diet produced mild changes on α- diversity but no effect on β-diversity in the global microbiome. Markers of gut dysbiosis like Firmicutes-to-Bacteroidetes ratio or the short chain fatty acid producing bacterial genera were not significantly affected by vitamin D deficiency. Notably, there was an increase in the relative abundance of the Enterobacteriaceae, with significant rises in its associated genera Escherichia, Candidatus blochmannia and Enterobacter in vitamin D deficient rats. Prevotella and Actinomyces were also increased and Odoribacteraceae and its genus Butyricimonas were decreased in rats with vitamin D-free diet. In conclusion, vitamin D deficit does not induce gut dysbiosis but produces some specific changes in bacterial taxa, which may play a pathophysiological role in the immunologic dysregulation associated with this hypovitaminosis.


2020 ◽  
Author(s):  
Zelei Miao ◽  
Jie-sheng Lin ◽  
Yingying Mao ◽  
Geng-dong Chen ◽  
Fang-fang Zeng ◽  
...  

<b>OBJECTIVE </b>To examine the association of erythrocyte n-6 polyunsaturated fatty acid (PUFA) biomarkers with incident type 2 diabetes and explore the potential role of gut microbiota in the association. <p><b>RESEARCH DESIGN AND METHODS </b>We evaluated 2,731 participants without type 2 diabetes recruited between 2008-2013 in the Guangzhou Nutrition and Health Study, China. Type 2 diabetes cases were identified with clinical and biochemical information collected at follow-up visits. Using stool samples collected during the follow-up in the subset (n=1,591), 16S rRNA profiling was conducted. Using multivariable-adjusted Poisson or linear regression, we examined associations of erythrocyte n-6 PUFA biomarkers with incident type 2 diabetes, and diversity and composition of gut microbiota.</p> <p><b>RESULTS </b>Over<b> </b>6.2 years of follow-up, 276 type 2 diabetes cases were identified (risk=0.10). Higher levels of erythrocyte <a>γ-linolenic acid</a> (GLA), but not linoleic or arachidonic acid, were associated with higher type 2 diabetes incidence. Comparing the top to the bottom quartile groups of GLA levels, relative risk was 1.72 (95% confidence intervals: 1.21, 2.44) adjusted for potential confounders. Baseline GLA was inversely associated with gut microbial richness and diversity (α-diversity, both <i>p</i><0.05) during follow-up, and significantly associated with microbiota β-diversity (<i>p</i>=0.002). α-diversity acted as a potential mediator in the association between GLA and type 2 diabetes (<i>p</i><0.05). Seven genera (<i>Butyrivibrio</i>,<i> Blautia</i>,<i> Oscillospira</i>,<i> Odoribacter</i>,<i> S24-7 other</i>, <i>Rikenellaceae other</i>,<i> </i>and <i>Clostridiales other</i>) were enriched in quartile 1 of GLA, and in participants without type 2 diabetes.</p> <p><b>CONCLUSIONS </b>Relative concentrations of erythrocyte GLA were positively associated with incident type 2 diabetes in a Chinese population and also with gut microbial profiles. These results highlight that gut microbiota may play an important role linking n-6 PUFA metabolism and type 2 diabetes etiology.</p>


Author(s):  
Xiaomei Liu ◽  
Xue Pan ◽  
Hao Liu ◽  
Xiaoxin Ma

ObjectiveTo investigate variation in gut microbiome in female patients with invasive mole (IM) and choriocarcinoma (CC) and compare it with healthy controls.MethodsFecal microbiome of 12 female patients with IM, 9 female patients with CC, and 24 healthy females were analyzed based on 16s rDNA sequencing. Alpha (α) diversity was evaluated using Shannon diversity index and Pielou evenness index, while beta (β) diversity was assessed using principle coordinate analysis (PCoA) of unweighted Unifrac distances. The potential functional changes of microbiomes were predicted using Tax4Fun. The relative abundance of microbial taxa was compared using Welch’s t test. The role of varied gut microbiota was analyzed via receiver operating characteristic (ROC) curve.ResultsThe α diversity and β diversity were significantly different between IM patients and controls, but not between CC patients and controls. In addition, the abundance of cancer-related genes was significantly increased in IM and CC patients. Notably, a total of 19 families and 39 genera were found to have significant differences in bacterial abundance. ROC analysis indicated that Prevotella_7 may be a potential biomarker among IM, CC, and controls.ConclusionOur study demonstrated that the diversity and composition of gut microbiota among IM patients, CC patients, and healthy females were significantly different, which provides rationale for using gut microbiota as diagnostic markers and treatment targets, as well as for further study of gut microbiota in gestational trophoblastic neoplasia (GTN).


2019 ◽  
Vol 3 (2) ◽  
Author(s):  
X. Zhang ◽  
L. Zhang ◽  
J. D. Hendrix ◽  
W. Zhai ◽  
M. W. Schilling

ObjectivesWoody breast (WB) meat from broilers has undesirable textural characteristics, including, crunchiness and stickiness. Genetic, nutritional, and environmental factors are associated with the mechanism of WB development. A diverse microbiota plays an important role on the growth performance and health of the host, and greater than 900 species of bacteria have been isolated in the gastrointestinal tract of chicken. However, minimal information is known about the microbiota in the guts of broilers that yield WB meat. Therefore, the objective of this research was to characterize and compare the bacterial diversity of caecal microbiota in broilers with normal and woody breast fillets.Materials and MethodsThe Institutional Animal Care and Use Committee of Mississippi State University (IACUC-16–542) reviewed and approved all protocols. One-day-old mixed sex broilers from two strains (A2 and B2) were raised in 32 pens in a chicken house. Birds of each strain were randomly assigned to 16 pens (15 birds per pen) and 8 pens were fed a control diet and 8 pens were fed an amino acid reduced diet (digestible lysine, total sulfur amino acids, and threonine reduced by 20% as compared to the control diet). After 8 wk of growth, 4 male broilers with normal breast (1 chick per pen) and 4 male broilers with WB (1 chick per pen) determined by palpation were selected for each treatment (breed × diet). The cecum samples were collected after birds were euthanized and bled. DNA was extracted and amplified using universal primers that target the V3∼4 regions of bacterial 16S rRNA for sequencing in Illumina MiSeq. Raw sequences were processed, and the quality was filtered using the default parameters of Quantitative Insights into Microbial Ecology (QIIME 2). Differences between species were assessed using the unpaired two-tailed Student t test assuming unequal variance at α = 0.05.ResultsData suggested that the most abundant phyla in all samples were Firmicutes, followed by Bacteroidetes and Proteobacteria. Accounting for both abundance and evenness of the species present in each sample (α diversity), results indicated that there was no difference (P > 0.05, pairwise Kruskal–Wallis test) in the diversity of gut microbiota between two phenotypes (normal vs. woody), two strains (A2 vs. B2) or two diets (control vs. reduced). However, principal coordinate analysis plots (β diversity) revealed that the samples were clustered based on the phenotype rather than by the strain or diet. These results revealed that the microbiota of each bird with normal breast was more similar to each other than the microbiota of birds with WB. Among all species (300–400) identified, no difference (P < 0.05) existed in bacterial abundance between the two genetic strains. However, 16 and 13 species were differentially abundant (P < 0.05) between normal and woody breast and between control and reduced diet treatments, respectively. In the ceca of WB birds Selenomonas bovis (12.6%) and Bacteroides plebeius (12.3%) were the top two predominant bacteria; however, the relative abundances of these two bacteria were only 5.1% and 1.2% in normal birds, respectively.ConclusionDifferences in the microbiome may be associated with the development of WB. Further studies are needed to investigate the potential mechanism and how to reduce broiler WB incidence by regulating their gut microbiota.


Sign in / Sign up

Export Citation Format

Share Document