scholarly journals WEEE collection and CRM recovery trials: piloting a holistic approach for Scotland

2018 ◽  
Vol 20 (4) ◽  
pp. 712-718

<p>Re-Tek UK and its partners, Enscape Consulting and the University of West of Scotland commenced trials for the collection and recovery of critical raw materials from waste electrical and electronic (WEEE) products in July 2016. Sponsored by the EU LIFE funded project ‘Critical Raw Material Closed Loop Recovery’ coordinated by WRAP with EARN, ERP UK Ltd, KTN Ltd and Wuppertal Institute as beneficiaries. The trials are aimed at boosting the recovery of critical raw materials (CRMs) from household waste electrical and electronic products (WEEE) and Information Communications Technology (ICT) in particular, after functioning equipment is separated out for re-use. The new collection models provided residents with the opportunity to drop-off unwanted electrical and electronic appliances at a time and place that suits them, through a collaborative approach which encourages local authorities, educational establishments, businesses, and Social Enterprises, etc to act as hub sites. Hubs were designed to minimize product damage and encourage drop-off, rather than hoarding. Extraction methods developed after the collection phase of the trial looked at the opportunity to recover cobalt, gold and silver from ICT products, with the potential to inform how a more sustainable supply chain could be developed in Scotland. The elements studied were selected to demonstrate financial opportunity (gold/silver) and a strategic priority material (cobalt) for long term supply. These are based on bioleaching and electrochemical recovery using novel carbon based electrode systems, and chemical processing methods using extraction techniques with an assessment of pilot performance and scale up challenges. Our report is on the state of progress towards practical solutions to WEEE and CRM recovery.</p>

Author(s):  
Siraj Salman Mohammad ◽  
Renata Oliveira Santos ◽  
Maria Ivone Barbosa ◽  
José Lucena Barbosa Junior

: Anthocyanins are widely spread in different kinds of food, especially fruits and floral tissues, there is an extensive range of anthocyanin compounds reach more than 600 exist in nature. Anthocyanins can be used as antioxidants and raw material for several applications in food and pharmaceutical industry. Consequently, a plenty of studies about anthocyanins sources and extraction methods were reported. Furthermore, many studies about their stability, bioactive and therapeutic properties have been done. According to the body of work, we firstly worked to shed light on anthocyanin properties including chemical, antioxidant and extraction properties. Secondly, we reported the applications and health benefits of anthocyanin including the applications in food processes and anthocyanin characteristics as therapeutic and prophylactic compounds. We reviewed anticancer, anti-diabetic, anti-fatness, oxidative Stress and lipid decreasing and vasoprotective effects of anthocyanins. In conclusion, because the importance of phytochemicals and bioactive compounds the research is still continuing to find new anthocyanins from natural sources and invest them as raw materials in the pharmaceutical and nutrition applications.


2021 ◽  
Vol 188 (3-4) ◽  
pp. 58-68
Author(s):  
Ludmila Kormishkina ◽  
◽  
Evgenii Kormishkin ◽  
Vladimir Gorin ◽  
Dmitrii Koloskov ◽  
...  

The rationale for this study is based on the extreme importance of finding a solution to a complex growth dilemma arising from the negative effects of human activity and the limited ability of the ecosystem to regenerate and provide resources required by mankind to ensure sustainable development and the long-term prosperity. The research is aimed at proving a scientific hypothesis that states: when the global raw-materials crisis becomes increasingly noticeable in various countries of the world, including Russia, circular investments may become a driver for long-term economic growth and the launch of far-reaching reforms of the economy in the 21st century. Circular investments in this paper are viewed as a special type of real eco-investment that combines advancements in technology and innovations to ensure renewal and industrial-scale reproduction of resources (raw materials and energy) from industrial and household waste, along with the mitigation and/or elimination of negative effects, on the environment. A multiple linear regression model has been developed to confirm a statistically-relevant connection between circular investments and real GDP. As a methodological foundation for the model, we used the classic Cobb-Douglas production function modified to take into account industrially reproduced raw material resources included in the production process. Further, we have defined major limits for circular investments in Russia today and highlighted the primary measures which are to be taken to launch circular investments in order to find a solution to the complex growth dilemma.


2021 ◽  
Vol 13 (23) ◽  
pp. 13483
Author(s):  
Michele Borroni ◽  
Carlo Massimo Pozzi ◽  
Sara Daniotti ◽  
Fabiana Gatto ◽  
Ilaria Re

Nutraceuticals are an ever-expanding market worldwide, facing the unstoppable transition towards a green economy. Developing economically feasible and sustainable alternatives to current raw materials for the extraction of nutraceuticals is, therefore, essential to reach these goals and, at the same time, achieve social and economic competitiveness. This paper intends to propose an economical and environmentally sustainable feedstock for chlorogenic acid (CGA) and inulin, whose current extraction from green coffee and chicory, respectively, is unsustainable. Our approach is based on the multi-criteria decision-making approach (MCDA), supported by the analytical hierarchy process (AHP), ranking the performance of competitor biomasses according to economic, social, and technological criteria. The results of this study highlight cardoon (Cynara cardunculus) as a promising raw material for the extraction of CGA and inulin in virtue of the high concentration, low-input growth regime, and the possibility of being grown on marginal lands. Nevertheless, cardoon biomass availability is currently scarce, extraction methods are underdeveloped, and consequently, the obtained product’s price is higher than the benchmark competitors. Policies and investments favoring sustainable cultivations could stimulate cardoon employment, linking economic advantages and land requalification while limiting phenomena such as desertification and food competition in the Mediterranean basin.


Minerals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 975
Author(s):  
Slobodan Radusinović ◽  
Argyrios Papadopoulos

Research for critical raw materials is of special interest, due to their increasing demand, opulence of applications and shortage of supply. Bauxites, or bauxite residue after alumina extraction can be sources of critical raw materials (CRMs) due to their content of rare earth elements and other critical elements. Montenegrin bauxites and bauxite residue (red mud) are investigated for their mineralogy and geochemistry. The study of the CRM’s potential of the Montenegrin bauxite residue after the application of Bayer process, is performed for the first time. Montenegrin bauxites, (Jurassic bauxites from the Vojnik-Maganik and Prekornica ore regions from the Early Jurassic, Middle Jurassic-Oxfordian and Late Triassic paleorelief) are promising for their REE’s content (around 1000 ppm of ΣREE’s). More specifically, they are especially enriched in LREEs compared to HREEs. Regarding other CRMs and other elements, Ti, V, Zr, Nb, Sr and Ga could also be promising. In bauxite residue, the contents of Zr, Sr, V, Sc, La, Ce, Y, Ti and Nb are higher than those in bauxites. However, raw bauxites and bauxite residue as a secondary raw material can be considered as possible sources of CRMs.


2021 ◽  
Author(s):  
Jérôme Bodin ◽  
Guillaume Bertrand ◽  
Patrick D'Hugues

&lt;p&gt;In line with the perspective of the Raw Material Initiative launched in 2008 by the European Commission to ensure access to and supply of critical raw materials in Europe, the H2020-funded IMPaCT project (Grant no. 730411) aims to develop a Switch-On Switch-Off (SO-SO) concept as an emergence of a new modern small-scale mining paradigm. Its ultimate goal is to increase the viability of many critical metals hosted in small primary deposits, particularly in Europe, by developing a modularized mobile plant (MMP) concept that can economically operate different type of ores in different types of geological and geographical contexts.&lt;/p&gt;&lt;p&gt;In addition, the project addresses the prospect of applying the SO-SO concept and the small-scale mining paradigm with regard to the reprocessing of mineral wastes in Europe. A dataset of legacy deposits of interest for the SO-SO concept was drawn from the ProMine Anthropogenic Concentration (AC) database (built during the European FP7 ProMine project) used as the data source and by applying a sequential-rating as a methodology to rank records and to highlight potential targets.&lt;/p&gt;&lt;p&gt;Apart from national mining wastes registries, the ProMine AC database remains so far the most exhaustive and reliable attempt at a consolidated pan-European database regarding mining wastes. Despite data shortcoming in the ProMine AC database, this study proposes potential targets of mineral wastes for the SO-SO concept in Europe and provides with preliminary information on location, type of waste, commodities content, tonnage and their potential.&lt;/p&gt;&lt;p&gt;To put into perspective the application of the SO-SO concept and the small-scale mining paradigm in regards with mineral wastes reprocessing, this study also proposes generic flowsheets to address specific potential targets identified among the records from the ProMine AC database and based on the preliminary information available. However, the relevancy and completeness of these information still require a case-by-case assessment. As a result, this methodology falls into a scoping approach that could be applied ahead of (pre)feasibility studies.&lt;/p&gt;&lt;p&gt;Combining the re-exploitation of a primary ore deposit along with the reprocessing of its wastes inherited from previous mining and ore processing activities is of great interest in seeking social acceptance. Eventually, in such perspective, a cross survey of the potential of both primary deposits, using the ProMine Mineral Deposits (MD) database, and secondary deposits, using the ProMine AC database, therefore appears as a relevant scoping strategy ahead of implementing small-scale mining.&lt;/p&gt;


2018 ◽  
Vol 941 ◽  
pp. 2220-2225
Author(s):  
Giovanni Capurso ◽  
Julian Jepsen ◽  
José M. Bellosta von Colbe ◽  
Claudio Pistidda ◽  
Oliver Metz ◽  
...  

A holistic approach is required for the development of materials and systems for hydrogen storage, embracing all the different steps involved in a successful advance of the technology. The several engineering solutions presented in this work try to address the technical challenges in synthesis and application of solid-state hydrogen storage materials, mainly metal hydride based compounds. Moving from the synthesis of samples in lab-scale to the production of industrial sized batches a novel process development is required, including safety approaches (for hazardous powders), and methods to prevent the contamination of sensitive chemicals. The reduction of overall costs has to be addressed as well, considering new sources for raw materials and more cost-efficient catalysts. The properties of the material itself influence the performances of the hydride in a pilot storage tank, but the characteristics of the system itself are crucial to investigate the reaction limiting steps and overcome hindrances. For this, critical experiments using test tanks are needed, learning how to avoid issues as material segregation or temperature gradients, and optimizing the design in the aspects of geometry, hull material, and test station facilities. The following step is a useful integration of the hydrogen storage system into real applications, with other components like fuel cells or hydrogen generators: these challenging scenarios provide insights to design new experiments and allow stimulating demonstrations.


2018 ◽  
Vol 284 ◽  
pp. 916-921
Author(s):  
Mihail Gerasimovich Bruyako ◽  
L. Grigoryeva

Mineral raw natural resources are not unlimited. Preservation of such non-renewable resources is the most urgent task of mankind. The development of non-waste technologies, the integrated use of secondary raw materials, which simultaneously reduces environmental damage - one of the ways to solve environmental problems. Utilization of wastes makes it possible to solve issues of environmental protection as well as resource saving. In the light of environmental requirements, building materials based on recycled materials, including cellulose-containing solid waste, have significant advantages over other traditional materials. Development of technology for obtaining new effective environmentally safe composite highly filled materials based on cellulose-containing solid household waste for the production of construction products is a rational link in solving the general problem of improving the environmental situation. In the article there are three main ways of combining gypsum binder with cellulose-containing solid household waste. Investigations were carried out on the effect of changing the ratio of cardboard / gypsum binder, specific pressing pressure, sequence of combination of components on the properties of the final product. The strength of the material was determined from the values of the flexural strength, the compression to complete destruction of the sample, and at 10% deformation. Studies have been carried out to increase moisture resistance. The results showed that the most optimal way of combining is the 2 way. The increase in moisture resistance is significantly enhanced by the action of organosilicon hydrophobisers.


2021 ◽  
Vol 22 (4) ◽  
pp. 1521
Author(s):  
Radu Claudiu Fierascu ◽  
Irina Fierascu ◽  
Anda Maria Baroi ◽  
Alina Ortan

Natural compounds obtained from different medicinal and aromatic plants have gained respect as alternative treatments to synthetic drugs, as well as raw materials for different applications (cosmetic, food and feed industries, environment protection, and many others). Based on a literature survey on dedicated databases, the aim of the present work is to be a critical discussion of aspects regarding classical extraction versus modern extraction techniques; possibilities to scale up (advantages and disadvantages of different extraction methods usually applied and the influence of extraction parameters); and different medicinal and aromatic plants’ different applications (medical and industrial applications, as well as the potential use in nanotechnology). As nowadays, research studies are directed toward the development of modern, innovative applications of the medicinal and aromatic plants, aspects regarding future perspectives are also discussed.


Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7682
Author(s):  
Adam Duda ◽  
Gregorio Fidalgo Valverde

Coking coal has been on the European list of critical raw materials since 2014 due to its high economic importance and high supply risk. In 2017, coking coal narrowly missed passing the threshold of economic importance. However, out of caution, it remained on the list of critical raw materials, as the steel industry still needs it. It is likely to be phased out of the list below when it does not fully meet the required criteria. As there are no significant alternatives for this energy intensive industry and neither electrification nor material or energy efficiency improvements are yet available at a sufficient level of technological readiness, the European Union remains dependent on coking coal imports. Therefore, any coking coal mining project in Europe is of great importance and an important alternative to solving the problems of providing this raw material. In this study, the Dębieńsko coking coal project in Poland is analyzed using a scientifically proven methodology based on world-class analysis of coking coal projects submitted for financing to financial institutions.


2021 ◽  
Vol 11 (5) ◽  
pp. 12-23
Author(s):  
Michal Cehlár ◽  
Zuzana Šimková

The presented article deals with the issue of critical raw materials in the European Union with an emphasis on sustainable development and also barite, as an only one critical raw material mined in Slovakia. The article points out in detail the deposits of individual critical raw materials within the European Union. They clearly profile the European area´s dependence on imports of critical raw materials in accordance with the Communication from the Commission to the Council, the European Economic and Social Committee and the Committee of the Regions on the European Union's list of critical raw materials. Based on a defined Herfindahl-Hirschman index, which is clearly methodologically described, the article also points to the exploitation of critical raw materials in the European Union, what is in consideration of sustainable development crucial because some inventions are fundamentally dependent on them, as is their production on world markets. This article deals with critical raw materials in the EU, because it is in this area that we would like to experience the 4th industrial revolution, which is characterized by "new products" with a short life cycle, products with the least possible impact on the environment, i.e. innovations that are often impossible without important raw materials. Is it at all possible to talk about sustainable development with such raw material sources in European Union?


Sign in / Sign up

Export Citation Format

Share Document