scholarly journals Disk height ratio impact in combined tool upon roughness of ground surface

2021 ◽  
Vol 2021 (5) ◽  
pp. 14-18
Author(s):  
Vladimir Gusev ◽  
Elizaveta Sobol'kova

The impact of the height ratio of fine-grain abrasive disks and coarse grinding ones included in a combined tool upon roughness of the surface ground is considered. There are drawn dependence diagrams of the arithmetic mean deviation of the ground surface profile in the function of independent factors of the process. On the basis of the multi-factor experiment carried out there is defined a ratio of heights of grinding disks mentioned ensuring a minimum value of the micro-geometry of the surface worked.

2018 ◽  
Vol 22 (2) ◽  
pp. 26-33 ◽  
Author(s):  
Vladimir Koltsov ◽  
◽  
Vinh Le Tri ◽  
Daria Starodubtseva ◽  
◽  
...  

Forests ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 265
Author(s):  
Mihnea Cățeanu ◽  
Arcadie Ciubotaru

Laser scanning via LiDAR is a powerful technique for collecting data necessary for Digital Terrain Model (DTM) generation, even in densely forested areas. LiDAR observations located at the ground level can be separated from the initial point cloud and used as input for the generation of a Digital Terrain Model (DTM) via interpolation. This paper proposes a quantitative analysis of the accuracy of DTMs (and derived slope maps) obtained from LiDAR data and is focused on conditions common to most forestry activities (rough, steep terrain with forest cover). Three interpolation algorithms were tested: Inverse Distance Weighted (IDW), Natural Neighbour (NN) and Thin-Plate Spline (TPS). Research was mainly focused on the issue of point data density. To analyze its impact on the quality of ground surface modelling, the density of the filtered data set was artificially lowered (from 0.89 to 0.09 points/m2) by randomly removing point observations in 10% increments. This provides a comprehensive method of evaluating the impact of LiDAR ground point density on DTM accuracy. While the reduction of point density leads to a less accurate DTM in all cases (as expected), the exact pattern varies by algorithm. The accuracy of the LiDAR-derived DTMs is relatively good even when LiDAR sampling density is reduced to 0.40–0.50 points/m2 (50–60 % of the initial point density), as long as a suitable interpolation algorithm is used (as IDW proved to be less resilient to density reductions below approximately 0.60 points/m2). In the case of slope estimation, the pattern is relatively similar, except the difference in accuracy between IDW and the other two algorithms is even more pronounced than in the case of DTM accuracy. Based on this research, we conclude that LiDAR is an adequate method for collecting morphological data necessary for modelling the ground surface, even when the sampling density is significantly reduced.


Materials ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 5824
Author(s):  
Weronika Czepułkowska-Pawlak ◽  
Emilia Wołowiec-Korecka ◽  
Leszek Klimek

Abrasive blasting is a process widely used in dentistry. One of the uses is the development of metal surfaces for connections with ceramics in fixed prosthetic restorations. The purpose of this paper was to check how the rough surface profile (width, height, and depth on unevenness) impacts the surface’s condition, like its wettability and percentage of stuck abrasives. The Ni-Cr alloy surface was abrasive blasted by silicon carbide with the various pressure parameters (0.2, 0.4, and 0.6 MPa) and abrasive particle sizes (50, 110, and 250 µm). Cleaned surfaces were examined for roughness, wettability, and percentage of stuck abrasive particles on the surface. The surface after abrasive blasting using 110 µm of abrasive size and 0.4 MPa pressure has the best wettability results. The width of unevenness may cause it. When the unevenness has too small or too large width and depth, the fluids may not cover the entire cavities because of locking the air. The surface condition of dental alloys directly affects metal–ceramic connection strength. The knowledge about the impact of the abrasive blasting parameters on the bond strength will allow one to create durable dental restorations.


2019 ◽  
Vol 3 (Supplement_1) ◽  
pp. S492-S493
Author(s):  
Amy K Drahota ◽  
Bethany E Keenan ◽  
Chantelle Lachance ◽  
Lambert Felix ◽  
James P Raftery ◽  
...  

Abstract Falls in hospitals and care homes are a major issue of international concern. Falls cost the US $34 billion a year, with injurious falls being particularly life-limiting and costly. Shock-absorbing flooring decreases the stiffness of the ground surface to reduce the impact of a fall. There is a growing body of evidence on flooring for fall-related injury prevention, however no systematic review exists to inform practice. We systematically reviewed the evidence on the clinical and cost-effectiveness of shock-absorbing flooring use for fall-related injury prevention in care settings. We searched six databases, clinical trial registries, conference proceedings, theses/dissertations, websites, reference lists, conducted forward citation searches, and liaised with experts in the field. We conducted study selection, data collection, and critical appraisal independently in duplicate. We evaluated the influence of shock-absorbing flooring on fall-related injuries, falls, and staff work-related injuries. We adopted a mixed methods approach considering evidence from randomised, non-randomised, economic, qualitative, and implementation studies. We assessed and reported the quality of outcomes using the GRADE approach and Summary of Findings Tables. This review, conducted over the course of 2019, summarises the certainty of the evidence on whether and which shock-absorbing floors influence injuries from falls, the chance of someone falling over, and work-related injuries in staff (e.g. from manoeuvring equipment across softer floors). Our findings are applicable to health and social care professionals, buildings and facilities managers, carers, older adults, architects, and designers. Funded by National Institute for Health Research, Health Technology Assessment (ref 17/148/11); registered in PROSPERO (CRD42019118834).


2005 ◽  
Vol 291-292 ◽  
pp. 115-120 ◽  
Author(s):  
Fei Hu Zhang ◽  
J.C. Gui ◽  
Yi Zhi Liu ◽  
Hua Li Zhang

Nano cemented carbide is a new style cutter material. Because its grain size is very small, it is superior to common cemented carbide in properties, such as high hardness, fracture toughness, flexural strength and higher abrasion resistance. As a cutter material, nano cemented carbide has wide use. In this paper, nano cemented carbide tool was ground with ELID technology, and the cutting properties of nano cemented carbide were studied, and the difference in cutting properties among the ultra-fine grain, common cemented carbide and nano cemented carbide was analyzed under the same condition. Results imply that the ground surface roughness of nano cemented carbide is obviously lower than that of common cemented carbide, and the tool life of nano cemented carbide is 5-7 times longer than that of common cemented carbide at low cutting speed.


2021 ◽  
pp. 1-24
Author(s):  
Seung Guk Baek ◽  
Hyungpil Moon ◽  
Hyouk Ryeol Choi ◽  
Ja Choon Koo

Abstract Humans come into physical contacts with various machines such as robots in daily life. This leads to the underlying issue of guaranteeing safety during such human-robot interactions. Thus, many devices and methods have been studied for impact damage reduction. A safety joint mechanism (SJM) using four-bar linkages has been highlighted as an impact cutoff device owing to its capabilities of nonlinear load transfer. This paper focuses on a new design and testing for a kinematic element of an SJM based on four-bar linkages to improve the impact cutoff performances. In the present work, a set of variable-length floating link designs is proposed, and the mechanism is implemented by mechanical contact surface profile shaping between the cams and followers. The performance of the cam-follower mechanism is evaluated depending on the variable length of the floating link, by using equivalent stiffness method, which successfully quantifies the performance of the proposed mechanism. Based on this design and analysis, two SJMs having symmetrical arrangements for four numbers of cam-follower mechanisms are fabricated: one SJM has fixed-length floating links and the other has variable-length floating links. The effect of the new kinematic elements on the performance improvement is verified by comparing the absorbed impact rates of the two SJMs by impact hammer-like drop tests. Consequently, it is confirmed that the rapid length change of the floating link is the core element for improving the performance of the safety mechanism.


Author(s):  
Marcus Lejon ◽  
Niklas Andersson ◽  
Lars Ellbrant ◽  
Hans Mårtensson

In this paper, the impact of manufacturing variations on performance of an axial compressor rotor are evaluated at design rotational speed. The geometric variations from the design intent were obtained from an optical coordinate measuring machine and used to evaluate the impact of manufacturing variations on performance and the flow field in the rotor. The complete blisk is simulated using 3D CFD calculations, allowing for a detailed analysis of the impact of geometric variations on the flow. It is shown that the mean shift of the geometry from the design intent is responsible for the majority of the change in performance in terms of mass flow and total pressure ratio for this specific blisk. In terms of polytropic efficiency, the measured geometric scatter is shown to have a higher influence than the geometric mean deviation. The geometric scatter around the mean is shown to impact the pressure distribution along the leading edge and the shock position. Furthermore, a blisk is analyzed with one blade deviating substantially from the design intent, denoted as blade 0. It is shown that the impact of blade 0 on the flow is largely limited to the blade passages that it is directly a part of. The results presented in this paper also show that the impact of this blade on the flow field can be represented by a simulation including 3 blade passages. In terms of loss, using 5 blade passages is shown to give a close estimate for the relative change in loss for blade 0 and neighboring blades.


2012 ◽  
Vol 8 (3) ◽  
pp. 1059-1066 ◽  
Author(s):  
V. Rath ◽  
J. F. González Rouco ◽  
H. Goosse

Abstract. The investigation of observed borehole temperatures has proved to be a valuable tool for the reconstruction of ground surface temperature histories. However, there are still many open questions concerning the significance and accuracy of the reconstructions from these data. In particular, the temperature signal of the warming after the Last Glacial Maximum is still present in borehole temperature profiles. It is shown here that this signal also influences the relatively shallow boreholes used in current paleoclimate inversions to estimate temperature changes in the last centuries by producing errors in the determination of the steady state geothermal gradient. However, the impact on estimates of past temperature changes is weaker. For deeper boreholes, the curvature of the long-term signal is significant. A correction based on simple assumptions about glacial–interglacial temperature changes shows promising results, improving the extraction of millennial scale signals. The same procedure may help when comparing observed borehole temperature profiles with the results from numerical climate models.


Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6853
Author(s):  
Jaroslaw Wajs ◽  
Paweł Trybała ◽  
Justyna Górniak-Zimroz ◽  
Joanna Krupa-Kurzynowska ◽  
Damian Kasza

Mining industry faces new technological and economic challenges which need to be overcome in order to raise it to a new technological level in accordance with the ideas of Industry 4.0. Mining companies are searching for new possibilities of optimizing and automating processes, as well as for using digital technology and modern computer software to aid technological processes. Every stage of deposit management requires mining engineers, geologists, surveyors, and environment protection specialists who are involved in acquiring, storing, processing, and sharing data related to the parameters describing the deposit, its exploitation and the environment. These data include inter alia: geometries of the deposit, of the excavations, of the overburden and of the mined mineral, borders of the support pillars and of the buffer zones, mining advancements with respect to the set borders, effects of mining activities on the ground surface, documentation of landslide hazards and of the impact of mining operations on the selected elements of the environment. Therefore, over the life cycle of a deposit, modern digital technological solutions should be implemented in order to automate the processes of acquiring, sharing, processing and analyzing data related to deposit management. In accordance with this idea, the article describes the results of a measurement experiment performed in the Mikoszów open-pit granite mine (Lower Silesia, SW Poland) with the use of mobile LiDAR systems. The technology combines active sensors with automatic and global navigation system synchronized on a mobile platform in order to generate an accurate and precise geospatial 3D cloud of points.


Author(s):  
Oleg V. Mkrtychev ◽  
Yury V. Novozhilov ◽  
Anton Yu. Savenkov

At the objects of space infrastructure and at nuclear power facilities there are industrial structures, the main task of which is to protect a person, equipment or machinery from emergencies such as, for example, explosions, falling of various objects, fragments. In accordance with the requirements of the Federal Law On the Protection of the Population and Territories from Natural and Technogenic Emergencies, when calculating such structures, all types of loads corresponding to their functional purpose must be taken into account. So, for structures located in the area of a possible accident and the fall of space rockets, it is necessary to calculate for the fall of the destroyed parts of the rocket engine. For nuclear power plant facilities, such accidents occur when containers and other heavy objects fall on the ground, affecting underground structures located in the ground, and for civil defense protective structures built into the basement floors of buildings, it is necessary to consider situations in which the overlying floors of a building collapse when exposed to there is an air shock wave on them. Therefore, this problem is relevant, and in this study, a finite-element method for calculating an underground structure in a non-linear dynamic setting has been developed when a large overall object collides with the ground.


Sign in / Sign up

Export Citation Format

Share Document