scholarly journals Statistical media optimization studies for growth and polydroxybutyrate (PHB) production by Pseudomonas spp.

2016 ◽  
Vol 8 (3) ◽  
pp. 1278-1285
Author(s):  
Mukesh R. Jangra ◽  
Ritu Batra ◽  
Ikbal Ikbal ◽  
Akanksha Jain ◽  
Rekha Ahlawat ◽  
...  

Using glucose as carbon source and mustard cake and yeast extract as nitrogen sources bacterial isolate Pseudomonas B2 exhibited a maximum PHB recovery of 0.620 (in terms of O.D.) and PHB weight of 0.27g/L in 96 h. To determine the possibility of growth potential of Pseudomonas spp., it was grown in different carbon sources like fructose, glucose, maltose, mannitol etc. and it was found that glucose yielded good growth and PHB production. In order to incorporate cost effective nitrogen and carbon source, mustard cake and cotton cake as nitrogen source and molasses as carbon were used in medium. Statistical media optimization design was used to optimize the culture conditions for maximizing the PHB production. A maximum of 0.37 g/L of PHB and 0.746 (O.D.) PHB recoveries were obtained using optimized concentrations. Batch kinetics can be used for model development, which will make possible simulation of nutrient limited cultivation(s) for over accumulation of PHB. FTIR studies confirmed the presence of PHB.

Biomolecules ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 198 ◽  
Author(s):  
Manoj K. Singh ◽  
Pradeep K. Rai ◽  
Anuradha Rai ◽  
Surendra Singh ◽  
Jay Shankar Singh

The production of poly-β-hydroxybutyrate (PHB) under varying environmental conditions (pH, temperature and carbon sources) was examined in the cyanobacterium Scytonema geitleri Bharadwaja isolated from the roof-top of a building. The S. geitleri produced PHB and the production of PHB was linear with the growth of cyanobacterium. The maximum PHB production (7.12% of dry cell weight) was recorded when the cells of S. geitleri were at their stationary growth phase. The production of PHB was optimum at pH 8.5 and 30 °C, and acetate (30 mM) was the preferred carbon source.


Archaea ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Fatma Karray ◽  
Manel Ben Abdallah ◽  
Nidhal Baccar ◽  
Hatem Zaghden ◽  
Sami Sayadi

Microbial production of bioplastics, derived from poly(3-hydroxybutyrate) (PHB), have provided a promising alternative towards plastic pollution. Compared to other extremophiles, halophilic archaea are considered as cell factories for PHB production by using renewable, inexpensive carbon sources, thus decreasing the fermentation cost. This study is aimed at screening 33 halophilic archaea isolated from three enrichment cultures from Tunisian hypersaline lake, Chott El Jerid, using starch as the sole carbon source by Nile Red/Sudan Black staining and further confirmed by PCR amplification of phaC and phaE polymerase genes. 14 isolates have been recognized as positive candidates for PHA production and detected during both seasons. The identification of these strains through 16S rRNA gene analyses showed their affiliation to Halorubrum, Natrinema, and Haloarcula genera. Among them, three PHB-producing strains, CEJ34-14, CEJ5-14, and CEJ48-10, related to Halorubrum chaoviator, Natrinema pallidum, and Haloarcula tradensis were found to be the best ones reaching values of 9.25, 7.11, and 1.42% of cell dry weight (CDW), respectively. Our findings highlighted that Halorubrum, Natrinema, and Haloarcula genera were promising candidates for PHB production using soluble starch as a carbon source under high salinity (250 g L-1 NaCl).


1992 ◽  
Vol 70 (5) ◽  
pp. 965-974
Author(s):  
Darleen A. DeMason ◽  
Daniel Widney ◽  
James I. Stillman

In vitro experiments with date palm embryos were designed to determine (i) which carbon sources support growth and (ii) what culture conditions promote haustorial growth and development. Date palm embryos were also transplanted into Washington filifera seeds to deterine whether any developmental characteristics were determined by the seed or endosperm. Date embryos did not grow on media containing starch or galactomannan any better than they do on medium lacking a carbon source. Good growth occurred on medium containing mannose, glucose, or sucrose as the carbon source. Embryos imbibed in the seed for 6 days grew better and produced larger haustoria than those imbibed 2 days, imbibed in water, imbibed in 3% mannose, or unimbibed. Date embryos imbibed in Washington seeds grew as well as those imbibed in date seeds. Optimum seedling and haustorium weights occurred at pH 7. The transembryonic seedlings germinated and grew normally but the shape of the haustorium was altered. Haustoria produced by in vitro grown seedlings exhibited many normal anatomical features, but haustoria from transembryonic seedlings exhibited more normal histological features. Results support the hypotheses that (i) date embryos do not possess the enzymes necessary to digest mannans and (ii) haustorium development is controlled by at least two steps, an initial inductive step that occurs by 6 days of imbibition and a further step that occurs later. We hypothesize that diffusable substances from the endosperm are responsible for controlling haustorium initiation and development. Key words: germination, embryo culture, palms, palm tissue culture, Arecaceae, haustorium.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Sonia Sethi ◽  
Aparna Datta ◽  
B. Lal Gupta ◽  
Saksham Gupta

Cellulase-producing bacteria were isolated from soil and identified as Pseudomonas fluorescens, Bacillus subtilIs, E. coli, and Serratia marcescens. Optimization of the fermentation medium for maximum cellulase production was carried out. The culture conditions like pH, temperature, carbon sources, and nitrogen sources were optimized. The optimum conditions found for cellulase production were 40°C at pH 10 with glucose as carbon source and ammonium sulphate as nitrogen source, and coconut cake stimulates the production of cellulase. Among bacteria, Pseudomonas fluorescens is the best cellulase producer among the four followed by Bacillus subtilis, E. coli, and Serratia marscens.


1970 ◽  
Vol 48 (7) ◽  
pp. 1335-1337 ◽  
Author(s):  
W. G. Bonn ◽  
R. A. Cappellini

Differences in growth rates and macroconidium production occurred between shake and standing cultures of a non-sporulating strain of Gibberella zeae (Schw.) Petch. Good growth occurred on all carbon sources except lactose, acetate, citrate, and α-ketoglutarate, and on all nitrogen sources except NaNO2. The pH of the media changed during growth, dropping to about 3 with the sugar and rising to about 9 with the organic acid and nitrogen sources. Little or no sporulation was observed in standing cultures. Sugars appeared to inhibit, and tricarboxylic cycle acids, aspartic acid, and phenylalanine stimulated sporulation.


2009 ◽  
Vol 76 (3) ◽  
pp. 359-364
Author(s):  
S.M. Tauk-Tornisiel ◽  
M.C. Vallejo ◽  
J.C. Govone

ABSTRACT Six Penicillium strains were isolated from soil at a depth of 0 15 cm in the Juréia-Itatins Ecology Station (JIES), in the São Paulo State, Brazil. They were evaluated for xylanase production under different temperatures and carbon sources. The best carbon source and temperature were first determined in an automated Bioscreen C system, verifying the growth of microorganisms. Liquid media containing tap water with 2% carbohydrate and/or 1% nitrogen sources were used. Afterwards, Penicillium citrinum, P. fellutanum, P. rugulosum and P. decumbens were cultivated in 250 mL Erlenmeyer flasks with 50 mL of culture medium containing tap water sole 2% carbon source (fructose, glucose, mannitol, sucrose or xylose) and 1% yeast extract as a nitrogen source at pH 5.0 and 28o C, with agitation of 150 rpm for 72 hours. These same strains, except P. decumbens, and P. purpurogenum were cultivated in solid substrate with wheat bran under the same environmental conditions to study the potential of xylanase activity. Maximum xylanase activity was observed in cultures with wheat bran, without the addition of any other carbon source, using inocula containing 1 x 107 spores.mL-1 (28o C, pH 5.0, 72 h). It can be concluded that P. fellutanum and P. citrinumare a good xylanase producers under the conditions of 28º C. The results of xylanase activity were 54% less at 28º C in liquid cultures media cultures than in solid substrate.


1980 ◽  
Vol 58 (23) ◽  
pp. 2484-2490 ◽  
Author(s):  
M. H. Zoberi

Growth requirements of Sclerotium rolfsii Sacc. were studied. Sclerotia developed on solid media and primordia started forming when the entire surface of the media in the culture plates was covered with mycelia. The optimal temperature for sclerotium formation varied between 20 and 37 °C. A wide range of carbon sources stimulated the formation of sclerotia, glucose clearly being the most effective. Sclerotia failed to form when a carbon source was absent from the medium. Sclerotia developed in the presence of all the nitrogen sources tested; the highest yield was obtained on (NH4)2SO4 and poorest on L-lysine. Experiments on the growth response to different vitamins showed that S. rolfsii produced sclerotia even on the medium lacking vitamins; the best harvest was obtained on the medium containing ascorbic acid. Media lacking potassium, magnesium, calcium, and sodium supported a good growth of mycelium, but sclerotia failed to form in the medium lacking potassium.


2014 ◽  
Vol 2 (1) ◽  
pp. 41-44 ◽  
Author(s):  
Jarina Joshi

Ammonium sulphate, ammonium phosphate, sodium nitrate, urea and glycine were the five different commonly available nitrogen sources used at different concentration ranging from 0.5 to 4% w/v to produce ethanol in batch culture. Potato paste made from red potatoes grown in hilly regions of Nepal was used as carbon source. Prior to fermentation all carbon sources were saccharified enzymatically using α- amylase at pH 5 and temperature 55oC. Maximum yield of ethanol 5.2% was obtained at a temperature of 30oC and pH 5.0 without exogeneous supply of nitrogen. There is slight decrease in concentration when temperature is decreased to 25oC but a drastic decrease in concentration when temperature is increased beyond optimum. All the exogeneously supplied nitrogen sources found to enhance ethanol production and cell viability when yeast strain Saccharomyces cerevisiae isolated from brewer’s yeast was used. Ammonium sulphate was found as best nitrogen supplement among them. Maximum ethanol percentage of 8.3 was observed at pH 5.0 and temperature 30oC with Ammonium sulphate concentration of 2%.DOI: http://dx.doi.org/10.3126/ijasbt.v2i1.9191Int J Appl Sci Biotechnol, Vol. 2(1): 41-44


1989 ◽  
Vol 67 (8) ◽  
pp. 2532-2534
Author(s):  
Thomas M. Pettey

Carbon and nitrogen sources were examined in a defined agar medium to determine the nutritional requirements of Cryptoporus volvatus, a Hymenomycete. Good growth was obtained with D-glucose, D-fructose, D-mannose, D-xylose, or dextrin as the carbon source. Good growth was obtained with ammonium sulfate, casein, peptone, glutamic acid, glycine, lysine, serine, or tyrosine as the nitrogen source. In a defined agar medium, C. volvatus exhibited a deficiency for thiamine, and a partial deficiency for biotin, inositol, and pyridoxine.


2005 ◽  
Vol 280 (16) ◽  
pp. 15921-15927 ◽  
Author(s):  
Mingzhu Liu ◽  
Tim Durfee ◽  
Julio E. Cabrera ◽  
Kai Zhao ◽  
Ding J. Jin ◽  
...  

By exploring global gene expression ofEscherichia coligrowing on six different carbon sources, we discovered a striking genome transcription pattern: as carbon substrate quality declines, cells systematically increase the number of genes expressed. Gene induction occurs in a hierarchical manner and includes many factors for uptake and metabolism of better but currently unavailable carbon sources. Concomitantly, cells also increase their motility. Thus, as the growth potential of the environment decreases, cells appear to devote progressively more energy on the mere possibility of improving conditions. This adaptation is not what would be predicated by classic regulatory models alone. We also observe an inverse correlation between gene activation and rRNA synthesis suggesting that reapportioning RNA polymerase (RNAP) contributes to the expanded genome activation. Significant differences in RNAP distributionin vivo, monitored using an RNAP-green fluorescent protein fusion, from energy-rich and energy-poor carbon source cultures support this hypothesis. Together, these findings represent the integration of both substrate-specific and global regulatory systems, and may be a bacterial approximation to metazoan risk-prone foraging behavior.


Sign in / Sign up

Export Citation Format

Share Document