scholarly journals Analysis of Hydrodynamic Methods for Enhancing Oil Recovery

2021 ◽  
Author(s):  
Sudad H Al-Obaidi

In the modern world, the hydrocarbons represent a raw material for various industries, therefore, the fight against the problem of extracting residual oil is relevant and important at this stage of human development. In connection with the high demand for hydrocarbons and the rise in world oil prices, research is being actively carried out on methods for enhancing oil recovery. Hydrodynamic methods of enhanced oil recovery represent one of the most effective and relevant methods by which the residual oil can be extracted. According to this, the current article pays special attention to several types of hydrodynamic methods forenhancing oil recovery. In this work it has been focused on three main types of hydrodynamic enhanced oil recovery methods; unsteady (cyclic) waterflooding, changing the directions of flows and forced fluid Extraction.

2021 ◽  
Author(s):  
Yongsheng Tan ◽  
Qi Li ◽  
Liang Xu ◽  
Xiaoyan Zhang ◽  
Tao Yu

<p>The wettability, fingering effect and strong heterogeneity of carbonate reservoirs lead to low oil recovery. However, carbon dioxide (CO<sub>2</sub>) displacement is an effective method to improve oil recovery for carbonate reservoirs. Saturated CO<sub>2</sub> nanofluids combines the advantages of CO<sub>2</sub> and nanofluids, which can change the reservoir wettability and improve the sweep area to achieve the purpose of enhanced oil recovery (EOR), so it is a promising technique in petroleum industry. In this study, comparative experiments of CO<sub>2</sub> flooding and saturated CO<sub>2</sub> nanofluids flooding were carried out in carbonate reservoir cores. The nuclear magnetic resonance (NMR) instrument was used to clarify oil distribution during core flooding processes. For the CO<sub>2</sub> displacement experiment, the results show that viscous fingering and channeling are obvious during CO<sub>2</sub> flooding, the oil is mainly produced from the big pores, and the residual oil is trapped in the small pores. For the saturated CO<sub>2</sub> nanofluids displacement experiment, the results show that saturated CO<sub>2</sub> nanofluids inhibit CO<sub>2</sub> channeling and fingering, the oil is produced from the big pores and small pores, the residual oil is still trapped in the small pores, but the NMR signal intensity of the residual oil is significantly reduced. The final oil recovery of saturated CO<sub>2</sub> nanofluids displacement is higher than that of CO<sub>2</sub> displacement. This study provides a significant reference for EOR in carbonate reservoirs. Meanwhile, it promotes the application of nanofluids in energy exploitation and CO<sub>2</sub> utilization.</p>


1981 ◽  
Vol 103 (4) ◽  
pp. 285-290 ◽  
Author(s):  
K. I. Kamath ◽  
S. J. Yan

The theory of enhanced oil recovery by surfactant flooding (micellarpolymer and “low-tension” floods) is based on three premises: that the chemical slug is 1) less mobile than the crude oil, 2) miscible with the reservoir fluids (oil and brine), and 3) stable over long periods of time (years) in the reservoir environment. We report here a rather simple process in which none of these expensive and exacting requirements have to be met. In this process, relatively small amounts of “EOR-active” substances present in certain petroleum-based sulfonates are found to recover 15–20 percent of the residual oil from waterflooded Berea sandstone cores. The chemicals are injected in the form of slugs of their aqueous solutions. If the chemical slugs are followed with similar slugs of additives such as partially hydrolyzed polyacrylamide, acrylamide monomer, urea, EDTA, or anions such as P2O7‴‴‴‴ and PO4‴‴‴, the oil recovery is increased 30–40 percent of the in-place residual oil. The concentrations of the “active” sulfonate and additive in their respective slugs appear to be of the order of 500 ppm or less. Extrapolation of the laboratory data to field conditions indicate that chemical requirements for the recovery of a barrel of tertiary oil are about 0.5–2 lb of sulfonate and a like amount of additive. The main features of the displacement process are: 1) Oil recovery is independent of oil viscosity in the tested range of 0.4–100 cps. 2) The process is essentially an immiscible displacement in which oil recovery depends on the amount of active chemical in the slug and not its concentration. 3) Tertiary oil is produced in the form of a clean “oil bank” and the buildup of a residual oil saturation at the producing end of linear cores occurs during the flood. From the data on hand, it is apparent that the oil recovery mechanism differs basically in character from the conventional Buckley-Leverett-type immiscible displacement. The low level concentrations of sulfonate and additive involved, and the independence of oil recovery with respect to oil viscosity suggest that the recovery mechanism is possibly actuated by certain specific functional groups in the structure of the EOR-active molecule or its anion, and of the additive. The results hold great potential for developing a simple and economical tertiary oil recovery process that can recover, very substantially, more oil (light as well as moderately viscous) than is now considered possible by conventional chemical floods.


2017 ◽  
Author(s):  
Thanapala S Murugesu ◽  
Rahim Masoudi ◽  
Dzulfadly B. Johare ◽  
Shlok Jalan ◽  
Izral Izarruddin B. Marzuki

2020 ◽  
Vol 2020 ◽  
pp. 1-22 ◽  
Author(s):  
Chen Sun ◽  
Hu Guo ◽  
Yiqiang Li ◽  
Guipu Jiang ◽  
Ruicheng Ma

Alkali-surfactant-polymer (ASP) flooding is very promising chemical enhanced oil recovery (EOR) technology which can make an incremental oil recovery factor (IORF) of 30% original oil in place (OOIP). How to choose alkali in ASP flooding remains a question for a long time. As the world’s only and largest ASP flooding application place, Daqing Oilfield has always adhered to the strategy of parallel development of strong alkali ASP flooding (SASP) and weak alkali ASP flooding (WASP), but SASP is in a dominant position, indicated by more investments and more project numbers. This leaves an impression that SASP is better than WASP. However, WASP is drawing more interest than SASP recently. Moreover, as the ASP flooding in Daqing went from field tests to commercial applications since 2014, how to comprehensively consider the benefit and cost of ASP flooding has become a new focus at low oil prices. This paper compares two typical large-scale field tests (B-1-D SASP and B-2-X WASP) completed in Daqing Oilfield and analyzes and discusses the causes of this difference. The injection viscosity and interfacial tension (IFT) for the two field test areas are substantially equivalent under the conditions of Daqing Oilfield, and WASP is better than SASP when reservoir geological conditions are considered. WASP exhibits the same IORF of 30% as SASP while having a much better economic performance. For the SASP field test, the injected strong alkali NaOH makes the test behave unlike a typical strong ASP flooding due to the presence of CO2 in the formation fluid, which well explains why IORF is much higher than all the other SASPs but scaling is less severe than others. This paper confirms that under Daqing Oilfield reservoir conditions, it is the alkali difference that caused the performance difference of these two tests, although some minor uncertainties exist. WASP is better than the SASP providing the same conditions . In addition, the detailed information of the two ASP field tests provided can give reference for the implementation of ASP flooding in other oilfields. After all, the study of ASP flooding enhanced oil recovery technology under low oil prices requires great foresight and determination.


2021 ◽  
Vol 2 (2) ◽  
pp. 1-11
Author(s):  
Geraldo Andre Raposo Ramos ◽  
Kyari Yates

Hydrocarbon exploration in Angola commenced in 1910 with its first oil recovered in 1955. The proven reserves in Angola are estimated to reach up to 13 billion barrels (2.1 billion m3). Most of the Angolan oil fields are mature or maturing and some are or may be abandoned due to unprofitable recovery limit beyond the conventional type of oil production. The oil recovery is mainly by primary and secondary recovery methods. Apart from the issue of maturity, there is increasing energy demand due to population growth and difficulties in discovering and developing new fields as alternatives to the current oil fields. For incremental and sustained production rate of these fields and in addition to instability of oil prices and concerns about future oil supply, Angola has started to work towards developing affordable and efficient technologies capable of recovering residual oil in reservoirs as well as extend the life of many current fields which can be achieved through the implementation of enhanced oil recovery (EOR). Therefore, this paper discusses the EOR planning strategy from project selection, project implementation and optimization, and field abandonment. It further highlights the mutual benefits that may be derived from a cross-collaboration between the government and other stakeholders in Angola.


2018 ◽  
Vol 75 ◽  
pp. 235-242 ◽  
Author(s):  
R. Jamie Stewart ◽  
Gareth Johnson ◽  
Niklas Heinemann ◽  
Mark Wilkinson ◽  
R. Stuart Haszeldine

2021 ◽  
Author(s):  
Neelam G. Kapse ◽  
Vasundhara Paliwal ◽  
Sumit Singh Dagar ◽  
Dolly Pal Rana ◽  
Prashant K Dhakephalkar

Abstract Laboratory evaluation of hyperthermophiles with the potential for Enhanced Oil Recovery (EOR) is often hampered by the difficulties in replicating the in situ growth conditions in the lab. In the present investigation, genome analysis was used to gain insights into the metabolic potential of a hyperthermophile to mobilize the residual oil from depleting high-temperature oil reservoir. Here, we report the 1.9 Mb draft genome sequence of hyperthermophilic anaerobic archaeon, Thermococcus sp. 101C5 with a GC content of 44%, isolated from a high temperature oil reservoir of Gujarat, India. 101C5 possessed the genetic arsenal required for adaptation to harsh oil reservoir conditions, such as various heat shock proteins for thermo-adaptation, Trk potassium uptake system proteins for osmo-adaptation, and superoxide reductases against oxidative stress. MEOR potential of the strain was established by the presence of genes encoding enzymes involved in desired metabolite production like hydrogen, acetate, exopolysaccharide, bio-emulsifier, etc., which was further experimentally confirmed and validated. Also, the presence of crude oil degradative genes highlighted the ability of the strain to mobilize heavy residual oil, which was confirmed under simulated conditions in sand-pack studies. The obtained results demonstrated additional oil recoveries of 42.1% and 56.5% at 96°C and 101°C, respectively, by strain 101C5, illustrating its potential for application in high-temperature oil reservoirs. To our best knowledge, this is the first report of genome analysis of any microbe assessed for its suitability for MEOR from the high-temperature oil reservoir.


2013 ◽  
Vol 26 ◽  
pp. 135-142 ◽  
Author(s):  
Hasnah Mohd Zaid ◽  
Noor Rasyada Ahmad Latiff ◽  
Noorhana Yahya ◽  
Hasan Soleimani ◽  
Afza Shafie

Enhanced oil recovery (EOR) refers to the recovery of oil that is left behind in a reservoir after primary and secondary recovery methods, either due to exhaustion or no longer economical, through application of thermal, chemical or miscible gas processes. Most conventional methods are not applicable in recovering oil from reservoirs with high temperature and high pressure (HTHP) due to the degradation of the chemicals in the environment. As an alternative, electromagnetic (EM) energy has been used as a thermal method to reduce the viscosity of the oil in a reservoir which increased the production of the oil. Application of nanotechnology in EOR has also been investigated. In this study, a non-invasive method of injecting dielectric nanofluids into the oil reservoir simultaneously with electromagnetic irradiation, with the intention to create disturbance at oil-water interfaces and increase oil production was investigated. During the core displacement tests, it has been demonstrated that in the absence of EM irradiation, both ZnO and Al2O3 nanofluids recovered higher residual oil volumes in comparison with commercial surfactant sodium dodecyl sulfate (SDS). When subjected to EM irradiation, an even higher residual oil was recovered in comparison to the case when no irradiation is present. It was also demonstrated that a change in the viscosity of dielectric nanofluids when irradiated with EM wave will improve sweep efficiency and hence, gives a higher oil recovery.


2021 ◽  
Author(s):  
Hang Su ◽  
Fujian Zhou ◽  
Lida Wang ◽  
Chuan Wang ◽  
Lixia Kang ◽  
...  

Abstract For reservoirs containing oil with a high total acid number, alkali-cosolvent-polymer (ACP) flood can potentially increase the oil recovery by its saponification effects. The enhanced oil recovery performance of ACP flood has been studied at core and reservoir scale in detail, however, the effect of ACP flood on residual oil saturation in the swept area still lacks enough research. Medical computed tomography (Medical-CT) scan and micro computed tomography (Micro-CT) scan are used in combination to visualize micro-scale flow and reveal the mechanisms of residual oil reduction during ACP flood. The heterogeneous cores containing two layers of different permeability are used for coreflood experiment to clarify the enhanced oil recovery (EOR) performance of ACP food in heterogeneous reservoirs. The oil saturation is monitored by Medical-CT. Then, two core samples are drilled in each core after flooding and the decrease of residual oil saturation caused by ACP flood is further quantified by Micro-CT imageing. Results show that ACP flood is 14.5% oil recovery higher than alkaline-cosolvent (AC) flood (68.9%) in high permeability layers, 17.9% higher than AC flood (26.3%) in low permeability layers. Compared with AC flood, ACP flood shows a more uniform displacement front, which implies that the injected polymer effectively weakened the viscosity fingering. Moreover, a method that can calculate the ratio of oil-water distribution in each pore is developed to establish the relationship between the residual oil saturation of each pore and its pore size, and reached the conclusion that they follow the power law correlation.


Sign in / Sign up

Export Citation Format

Share Document