scholarly journals Benchtop Semi-Automated Solid State Photolithography Tool

2020 ◽  
Author(s):  
Zoulikha Mouffak ◽  
A. Olaivar ◽  
A. N. Vang

The cost of a lab-grade photolithography tool is typically of the order of tens of thousands of dollars, a prohibitive price for many organizations that wish to prototype the fabrication of nanostructures. The availability of a more cost-friendly implementation of photolithography is crucial to the research and development of new technologies in nanoscale devices. In this work, we built a scaled down simplified version of a patterning system, the benchtop photolithography tool, which is expected to replicate certain nanopatterning techniques for under $300 —a tiny fraction of the cost of a typical mask aligner. A semi-automated benchtop photolithography tool is designed, fabricated, and programmed for prototyping and for research purposes. We use a USB 32-Bit Whacker PIC32MX795 Development Board that drives a programmable touchscreen, a UV LED array, a shutter, and a UV sensor, allowing us to have the desired high precision UV exposure. The integration of a microcontroller to operate the peripheral components of the tool allows to automate the small-scale photolithography process.

Author(s):  
Michael Kinch

The first indications of future trouble are identified. For most of history, new medicines arise from nature but this approach came into question as evidenced by the development of the cancer drug Taxol. As understanding of biology and chemistry incraesed, a degree of over-confidence arose as researchers assumed that new technologies would allow them to predict the most effective medicines. These changes were a response to an environment confronting twin pressures in the form of rising generic medicines coupled with ever more costly research and development activities needed to develop new products to replace those devastated by generic competition. These issues were exacerbated by a rising dependence upon “blockbuster” products, which conveyed short-term revenues but inevitably needed to be replaced by even more profitable products once generic competition intervened. Dependence on blockbusters was exemplified by the story of ulcer medicines, which was disrupted by an audacious study by an investigator who used himself as a Guinea pig to make his point. As such risks increased, the industry became more cautious and the race was on to make incremental improvements upon competitors’ products. All the while the cost of developing new medicines continued to escalate.


MRS Bulletin ◽  
2004 ◽  
Vol 29 (11) ◽  
pp. 805-813 ◽  
Author(s):  
Herb Goronkin ◽  
Yang Yang

AbstractThis article introduces the November 2004 issue of MRS Bulletin on the state of the art in solid-state memory and storage technologies.The memory business drives hundreds of billions of dollars in sales of electronic equipment per year. The incentive for continuing on the historical track outlined by Moore's law is huge, and this challenge is driving considerable investment from governments around the world as well as in private industry and universities. The problem is this: recognizing that current approaches to semiconductor-based memory are limited, what new technologies can be introduced to continue or even accelerate the pace of complexity? The articles in this issue highlight several commercially available memories, as well as memory technologies that are still in the research and development stages. What will become apparent to the reader is the huge diversity of approaches to this problem.


1993 ◽  
Vol 5 (5) ◽  
pp. 416-419
Author(s):  
Kihachiro Nishikawa ◽  

Through my forty years of experience as an electromechanical engineer, I have realized that the development of technical design has been one of the most important elements necessary for Japanese industrial expansion. The cost reduction of the products, along with quality assurance and functional improvements, is one of the main purposes of the technological progress; and it is a difficult challenge. To achieve this purpose, engineers are requested to design smaller, lighter products with fewer parts. In other words, engineering designers must adopt the new technologies in order to reach their target. This demand stimulates Research and Development (R&D) activity in many related fields.


2019 ◽  
pp. 30-41 ◽  
Author(s):  
E.P. Sannikova ◽  
A.V. Malysheva ◽  
F.A. Klebanov ◽  
D.G. Kozlov

The capacity of yeast to produce the highly active variants of PLA2 has been confirmed. The high-active variants were based on the original enzyme from the strain А-2688 of Streptomyces violaceoruber. To reduce the enzyme toxicity and to increase its expression, various approaches were tested including point mutations, construction of artificial N- and/or C-end pro-regions, hybridization with other proteins and engineering or inactivation of glycosylation sites. As a main result, the modified PLA2 enzymes were obtained which have the same secretion level as their low-active predecessors, but specific activity of which was at least tenfold higher. As the main feature, the selected mutants were characterized by a lower affinity for Ca2+ that probably accounts for their low toxicity (and high expression capacity) at the stage of biosynthesis and their ability to activate under special conditions, e.g. during the egg yolk fermentation. The data obtained can provide a basis for the cost reduction of highly active PLA2 enzyme preparations in industries where the application of high calcium concentrations is allowed. recombinant phospholipase А2, Streptomyces violaceoruber, yeasts, secretion, producer strain The work was initiated by the Innovation Center Biriuch - New Technologies, Ltd., and was supported within the framework of the State Assignment no. 595-00004-18 PR.


2020 ◽  
Vol 3 (1) ◽  
pp. 61
Author(s):  
Kazuhiro Aruga

In this study, two operational methodologies to extract thinned woods were investigated in the Nasunogahara area, Tochigi Prefecture, Japan. Methodology one included manual extraction and light truck transportation. Methodology two included mini-forwarder forwarding and four-ton truck transportation. Furthermore, a newly introduced chipper was investigated. As a result, costs of manual extractions within 10 m and 20 m were JPY942/m3 and JPY1040/m3, respectively. On the other hand, the forwarding cost of the mini-forwarder was JPY499/m3, which was significantly lower than the cost of manual extractions. Transportation costs with light trucks and four-ton trucks were JPY7224/m3 and JPY1298/m3, respectively, with 28 km transportation distances. Chipping operation costs were JPY1036/m3 and JPY1160/m3 with three and two persons, respectively. Finally, the total costs of methodologies one and two from extraction within 20 m to chipping were estimated as JPY9300/m3 and JPY2833/m3, respectively, with 28 km transportation distances and three-person chipping operations (EUR1 = JPY126, as of 12 August 2020).


Author(s):  
Mohammad Istiak Hossain ◽  
Jan I. Markendahl

AbstractSmall-scale commercial rollouts of Cellular-IoT (C-IoT) networks have started globally since last year. However, among the plethora of low power wide area network (LPWAN) technologies, the cost-effectiveness of C-IoT is not certain for IoT service providers, small and greenfield operators. Today, there is no known public framework for the feasibility analysis of IoT communication technologies. Hence, this paper first presents a generic framework to assess the cost structure of cellular and non-cellular LPWAN technologies. Then, we applied the framework in eight deployment scenarios to analyze the prospect of LPWAN technologies like Sigfox, LoRaWAN, NB-IoT, LTE-M, and EC-GSM. We consider the inter-technology interference impact on LoRaWAN and Sigfox scalability. Our results validate that a large rollout with a single technology is not cost-efficient. Also, our analysis suggests the rollout possibility of an IoT communication Technology may not be linear to cost-efficiency.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2263
Author(s):  
Mahmood Ebadian ◽  
Shahab Sokhansanj ◽  
David Lee ◽  
Alyssa Klein ◽  
Lawrence Townley-Smith

In this study, an inter-continental agricultural pellet supply chain is modeled, and the production cost and price of agricultural pellets are estimated and compared against the recent cost and price of wood pellets in the global marketplace. The inter-continental supply chain is verified and validated using an integration of an interactive mapping application and a simulation platform. The integrated model is applied to a case study in which agricultural pellets are produced in six locations in Canada and shipped and discharged at the three major ports in Western Europe. The cost of agricultural pellets in the six locations is estimated to be in the range of EUR 92–95/tonne (CAD 138–142/tonne), which is comparable with the recent cost of wood pellets produced in small-scale pellet plants (EUR 99–109/tonne). The average agricultural pellet price shipped from the six plants to the three ports in Western Europe is estimated to be in a range of EUR 183–204 (CAD 274–305/tonne), 29–42% more expensive that the average recent price of wood pellets (EUR 143/tonne) at the same ports. There are several potential areas in the agricultural pellet supply chains that can reduce the pellet production and distribution costs in the mid and long terms, making them affordable supplement to the existing wood pellet markets. Potential economic activities generated by the production of pellets in farm communities can be significant. The generated annual revenue in the biomass logistics system in all six locations is estimated to be about CAD 21.80 million. In addition, the logistics equipment fleet needs 176 local operators with a potential annual income of CAD 2.18 million.


Processes ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 575
Author(s):  
Jelena Ochs ◽  
Ferdinand Biermann ◽  
Tobias Piotrowski ◽  
Frederik Erkens ◽  
Bastian Nießing ◽  
...  

Laboratory automation is a key driver in biotechnology and an enabler for powerful new technologies and applications. In particular, in the field of personalized therapies, automation in research and production is a prerequisite for achieving cost efficiency and broad availability of tailored treatments. For this reason, we present the StemCellDiscovery, a fully automated robotic laboratory for the cultivation of human mesenchymal stem cells (hMSCs) in small scale and in parallel. While the system can handle different kinds of adherent cells, here, we focus on the cultivation of adipose-derived hMSCs. The StemCellDiscovery provides an in-line visual quality control for automated confluence estimation, which is realized by combining high-speed microscopy with deep learning-based image processing. We demonstrate the feasibility of the algorithm to detect hMSCs in culture at different densities and calculate confluences based on the resulting image. Furthermore, we show that the StemCellDiscovery is capable of expanding adipose-derived hMSCs in a fully automated manner using the confluence estimation algorithm. In order to estimate the system capacity under high-throughput conditions, we modeled the production environment in a simulation software. The simulations of the production process indicate that the robotic laboratory is capable of handling more than 95 cell culture plates per day.


Micromachines ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 882
Author(s):  
M. Munzer Alseed ◽  
Hamzah Syed ◽  
Mehmet Cengiz Onbasli ◽  
Ali K. Yetisen ◽  
Savas Tasoglu

Civil wars produce immense humanitarian crises, causing millions of individuals to seek refuge in other countries. The rate of disease prevalence has inclined among the refugees, increasing the cost of healthcare. Complex medical conditions and high numbers of patients at healthcare centers overwhelm the healthcare system and delay diagnosis and treatment. Point-of-care (PoC) testing can provide efficient solutions to high equipment cost, late diagnosis, and low accessibility of healthcare services. However, the development of PoC devices in developing countries is challenged by several barriers. Such PoC devices may not be adopted due to prejudices about new technologies and the need for special training to use some of these devices. Here, we investigated the concerns of end users regarding PoC devices by surveying healthcare workers and doctors. The tendency to adopt PoC device changes is based on demographic factors such as work sector, education, and technology experience. The most apparent concern about PoC devices was issues regarding low accuracy, according to the surveyed clinicians.


Informatics ◽  
2021 ◽  
Vol 8 (2) ◽  
pp. 30
Author(s):  
Mansoor Ahmed Soomro ◽  
Mohd Hizam-Hanafiah ◽  
Nor Liza Abdullah ◽  
Mohd Helmi Ali ◽  
Muhammad Shahar Jusoh

Industry 4.0 revolution, with its cutting-edge technologies, is an enabler for businesses, particularly in reducing the cost and improving the productivity. However, a large number of organizations are still too in their infancy to leverage the true potential of Industry 4.0 and its technologies. This paper takes a quantitative approach to reveal key insights from the companies that have implemented Industry 4.0 technologies. For this purpose, 238 technology companies in Malaysia were studied through a survey questionnaire. As technology companies are usually the first in line to adopt new technologies, they can be studied better as leaders in adopting the latest technologies. The findings of this descriptive study surfaced an array of insights in terms of Industry 4.0 readiness, Industry 4.0 technologies, leadership, strategy, and innovation. This research paper contributes by providing 10 key empirical insights on Industry 4.0 that can be utilized by managers to pace up their efforts towards digital transformation, and can help the policymakers in drafting the right policy to drive the digital revolution.


Sign in / Sign up

Export Citation Format

Share Document