scholarly journals Visuospatial integration: Paleoanthropological and archaeological perspectives

2021 ◽  
Author(s):  
Emiliano Bruner ◽  
enza e. spinapolice ◽  
Ariane Burke ◽  
Karenleigh A. Overmann

The visuospatial system integrates inner and outer functional processes, organizing spatial, temporal, and social interactions between brain, body, and environment. These processes involve sensorimotor networks like the eye–hand circuit, which is especially important to primates, given their reliance on vision and touch as primary sensory modalities and the use of the hands in social and environmental interactions. At the same time, visuospatial cognition is intimately connected with egocentric memory, self-awareness, and simulation capacity. In the present article, we review issues associated with investigating visuospatial integration in extinct human groups through the use of anatomical and behavioral data gleaned from the paleontological and archaeological records. In modern humans, paleoneurological analyses have demonstrated noticeable and unique morphological changes in parietal cortex, an area crucial to visuospatial management. Archaeological data provides information on hand-tool interaction, the spatial behavior of past populations and their interaction with the environment (e.g. in domains like landscape use and navigation, the spatial relations implicit in social networks, etc.). Visuospatial integration may represent a critical bridge between extended cognition, self-awareness, and social perception. As such, visuospatial functions are relevant to the hypothesis that human evolution is characterized by changes in brain–body–environment interactions and relations, which enhance possibilities for integrating inner and outer cognitive components through neural plasticity and a specialized embodiment capacity. We therefore advocate the investigation of visuospatial functions in past populations through the paleoneurological study of anatomical elements and archaeological analysis of visuospatial behaviors.

F1000Research ◽  
2015 ◽  
Vol 4 ◽  
pp. 625 ◽  
Author(s):  
Bryan D. Devan ◽  
Christopher Magalis ◽  
Robert J. McDonald

The publication of a recent article in F1000Research has led to discussion of, and correspondence on a broader issue that has a long history in the fields of neuroscience and psychology.  Namely, is it possible to separate the cognitive components of performance, in this case spatial behavior, from the motoric demands of a task?  Early psychological experiments attempted such a dissociation by studying a form of spatial maze learning where initially rats were allowed to explore a complex maze, termed “latent learning,” before reinforcement was introduced.  Those rats afforded the latent learning experience solved the task faster than those that were not, implying that cognitive map learning during exploration aided in the performance of the task once a motivational component was introduced.  This form of latent learning was interpreted as successfully demonstrating that an exploratory cognitive map component was acquired irrespective of performing a learned spatial response under deprivation/motivational conditions.  The neural substrate for cognitive learning was hypothesized to depend on place cells within the hippocampus.  Subsequent behavioral studies attempted to directly eliminate the motor component of spatial learning by allowing rats to passively view the distal environment before performing any motor response using a task that is widely considered to be hippocampal-dependent.  Latent learning in the water maze, using a passive placement procedure has met with mixed results.  One constraint on viewing cues before performing a learned swimming response to a hidden goal has been the act of dynamically viewing distal cues while moving through a part of the environment where an optimal learned spatial escape response would be observed.  We briefly review these past findings obtained with adult animals to the recent efforts of establishing a “behavioral topology” separating cognitive-spatial learning from tasks differing in motoric demands in an attempt to define when cognitive-spatial behavior emerges during development.


F1000Research ◽  
2015 ◽  
Vol 4 ◽  
pp. 625
Author(s):  
Bryan D. Devan ◽  
Christopher Magalis ◽  
Robert J. McDonald

The publication of a recent article in F1000Research has led to discussion of, and correspondence on a broader issue that has a long history in the fields of neuroscience and psychology.  Namely, is it possible to separate the cognitive components of performance, in this case spatial behavior, from the motoric demands of a task?  Early psychological experiments attempted such a dissociation by studying a form of spatial maze learning where initially rats were allowed to explore a complex maze, termed “latent learning,” before reinforcement was introduced.  Those rats afforded the latent learning experience solved the task faster than those that were not, implying that cognitive map learning during exploration aided in the performance of the task once a motivational component was introduced.  This form of latent learning was interpreted as successfully demonstrating that an exploratory cognitive map component was acquired irrespective of performing a learned spatial response under deprivation/motivational conditions.  The neural substrate for cognitive learning was hypothesized to depend on place cells within the hippocampus.  Subsequent behavioral studies attempted to directly eliminate the motor component of spatial learning by allowing rats to passively view the distal environment before performing any motor response using a task that is widely considered to be hippocampal-dependent.  Latent learning in the water maze, using a passive placement procedure has met with mixed results.  One constraint on viewing cues before performing a learned swimming response to a hidden goal has been the act of dynamically viewing distal cues while moving through a part of the environment where an optimal learned spatial escape response would be observed.  We briefly review these past findings obtained with adult animals to the recent efforts of establishing a “behavioral topology” separating cognitive-spatial learning from tasks differing in motoric demands in an attempt to define when cognitive-spatial behavior emerges during development.


2019 ◽  
Vol 18 (21) ◽  
pp. 1893-1907 ◽  
Author(s):  
Elena Ivanova ◽  
Radosveta Bozhilova ◽  
Radka Kaneva ◽  
Vihra Milanova

MicroRNAs are endogenous small non-coding RNAs that regulate gene expression by means of partial complementarity to microRNA binding sites at their target genes. These molecules have emerged as key regulators of almost every biological process including accurate control of neuronal gene expression. The authors discuss the current state of microRNA research, including studies of psychiatric disorders (schizophrenia, autism spectrum disorder and affective disorders). Stress has also been shown to have a critical role in the development of psychiatric disorders, at least partially, through mechanisms related to neural plasticity. Synaptic connections in the brain undergo experience-dependent functional or morphological changes through complex pathways that are not yet fully understood, but for which microRNAs might have a critical role. The focus is on the role that microRNAs play in the development of psychiatric disorders and their potential to serve as biomarkers of disease as well as targets for pharmacological treatment.


1998 ◽  
Vol 10 (4) ◽  
pp. 445-463 ◽  
Author(s):  
Sabine Gillner ◽  
Hanspeter A. Mallot

Spatial behavior in humans and animals includes a wide variety of behavioral competences and makes use of a large number of sensory cues. Here we studied the ability of human subjects to search locations, to find shortcuts and novel paths, to estimate distances between remembered places, and to draw sketch maps of the explored environment; these competences are related to goal-independent memory of space, or cognitive maps. Information on spatial relations was restricted to two types: a visual motion sequence generated by simulated movements in a virtual maze and the subject's own movement decisions defining the path through the maze. Visual information was local (i.e., no global landmarks or compass information was provided). Other position and movement information (vestibular or proprioceptive) was excluded. The amount of visual information provided was varied over four experimental conditions. The results indicate that human subjects are able to learn a virtual maze from sequences of local views and movements. The information acquired is local, consisting of recognized positions and movement decisions associated to them. Although simple associations of this type can be shown to be present in some subjects, more complete configurational knowledge is acquired as well. The results are discussed in a view-based framework of navigation and the representation of spatial knowledge by means of a view graph.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Olga Borodovitsyna ◽  
Neal Joshi ◽  
Daniel Chandler

Neural plasticity plays a critical role in mediating short- and long-term brain responses to environmental stimuli. A major effector of plasticity throughout many regions of the brain is stress. Activation of the locus coeruleus (LC) is a critical step in mediating the neuroendocrine and behavioral limbs of the stress response. During stressor exposure, activation of the hypothalamic-pituitary-adrenal axis promotes release of corticotropin-releasing factor in LC, where its signaling promotes a number of physiological and cellular changes. While the acute effects of stress on LC physiology have been described, its long-term effects are less clear. This review will describe how stress changes LC neuronal physiology, function, and morphology from a genetic, cellular, and neuronal circuitry/transmission perspective. Specifically, we describe morphological changes of LC neurons in response to stressful stimuli and signal transduction pathways underlying them. Also, we will review changes in excitatory glutamatergic synaptic transmission in LC neurons and possible stress-induced modifications of AMPA receptors. This review will also address stress-related behavioral adaptations and specific noradrenergic receptors responsible for them. Finally, we summarize the results of several human studies which suggest a link between stress, altered LC function, and pathogenesis of posttraumatic stress disorder.


2021 ◽  
Author(s):  
Benjamin Pitt ◽  
Alexandra Carstensen ◽  
Isabelle Boni ◽  
Steven T. Piantadosi ◽  
Edward Gibson

The physical properties of space may be universal, but the way people conceptualize space is variable. In some groups, people tend to use egocentric space (e.g. left, right) to encode the locations of objects, while in other groups, people encode the same spatial scene using allocentric space (e.g. upriver, downriver). These different spatial frames of reference (FoRs) characterize the way people talk about spatial relations and the way they think about them, even when they are not using language. Although spatial language and spatial reasoning tend to covary, the root causes of this variation are unclear. Here we propose that variation in FoR use partly reflects the discriminability of the relevant spatial continua. In an initial test of this proposal in a group of indigenous Bolivians, we compared FoR use across spatial axes that are known to differ in discriminability. In both verbal and nonverbal tests, participants spontaneously used different FoRs on different spatial axes: On the lateral axis, where egocentric (left-right) discrimination is difficult, their spatial behavior and language was predominantly allocentric; on the sagittal axis, where egocentric (front-back) discrimination is relatively easy, they were predominantly egocentric. These findings challenge the claim that each language group can be characterized by a predominant spatial frame of reference. Rather, both spatial memory and language can differ categorically across axes, even within the same individuals. We suggest that differences in spatial discrimination can explain differences in both spatial memory and language within and across human groups.


Author(s):  
P. Bagavandoss ◽  
JoAnne S. Richards ◽  
A. Rees Midgley

During follicular development in the mammalian ovary, several functional changes occur in the granulosa cells in response to steroid hormones and gonadotropins (1,2). In particular, marked changes in the content of membrane-associated receptors for the gonadotropins have been observed (1).We report here scanning electron microscope observations of morphological changes that occur on the granulosa cell surface in response to the administration of estradiol, human follicle stimulating hormone (hFSH), and human chorionic gonadotropin (hCG).Immature female rats that were hypophysectcmized on day 24 of age were treated in the following manner. Group 1: control groups were injected once a day with 0.1 ml phosphate buffered saline (PBS) for 3 days; group 2: estradiol (1.5 mg/0.2 ml propylene glycol) once a day for 3 days; group 3: estradiol for 3 days followed by 2 days of hFSH (1 μg/0.1 ml) twice daily, group 4: same as in group 3; group 5: same as in group 3 with a final injection of hCG (5 IU/0.1 ml) on the fifth day.


Author(s):  
A.J. Mia ◽  
L.X. Oakford ◽  
T. Yorio

The amphibian urinary bladder has been used as a ‘model’ system for studies of the mechanism of action of antidiuretic hormone (ADH) in stimulating transepithelial water flow. The increase in water permeability is accompanied by morphological changes that include the stimulation of apical microvilli, mobilization of microtubules and microfilaments and vesicular membrane fusion events . It has been shown that alterations in the cytosolic calcium concentrations can inhibit ADH transmembrane water flow and induce alterations in the epithelial cell cytomorphology, including the cytoskeletal system . Recently, the subapical granules of the granular cell in the amphibian urinary bladder have been shown to contain high concentrations of calcium, and it was suggested that these cytoplasmic constituents may act as calcium storage sites for intracellular calcium homeostasis. The present study utilizes the calcium antagonist, verapamil, to examine the effect of calcium deprivation on the cytomorphological features of epithelial cells from amphibian urinary bladder, with particular emphasis on subapical granule and microfilament distribution.


Author(s):  
N. Kohyama ◽  
K. Fukushima ◽  
A. Fukami

Since the interlayer or adsorbed water of some clay minerals are quite easily dehydrated in dried air, in vacuum, or at moderate temperatures even in the atmosphere, the hydrated forms have not been observed by a conventional electron microscope(TEM). Recently, specific specimen chambers, “environmental cells(E.C.),” have been developed and confirmed to be effective for electron microscopic observation of wet specimen without dehydration. we observed hydrated forms of some clay minerals and their morphological changes by dehydration using a TEM equipped with an E.C..The E.C., equipped with a single hole copper-microgrid sealed by thin carbon-film, attaches to a TEM(JEM 7A) with an accelerating voltage 100KV and both gas pressure (from 760 Torr to vacuum) and relative humidity can be controlled. The samples collected from various localities in Japan were; tubular halloysite (l0Å) from Gumma Prefecture, sperical halloysite (l0Å) from Tochigi Pref., and intermediate halloysite containing both tubular and spherical types from Fukushima Pref..


Author(s):  
F.G. Lightfoot ◽  
L.E. Grau ◽  
M.M. Cassidy ◽  
G.R. Tadvalkar ◽  
G.V. Vahouny

Psyllium hydrophillic mucilloid is a natural gelling fiber consumed by a large population of our society. It is used as a bulk-producing laxative and in the treatment of gastrointestinal disorders such as “Irritable Bowel Syndrome”. The literature pertaining to the ultrastructural effects of this agent is sparse.This study documents morphological changes induced by psyllium. Animals fed a diet containing 2% psyllium for four weeks were subsequently sacrificed and processed for scanning and transmission electron microscopy. The colon contained fecal material combined with psyllium which conformed to the contour of the luminal surface. This mixture formed surface replicas of the intestinal mucosa. These replicas and their related colonic sites were processed for morphologic analysis.


Sign in / Sign up

Export Citation Format

Share Document