scholarly journals A Review of economic analysis of climate change impacts and adaptation in fisheries and aquaculture

2022 ◽  
Author(s):  
Nhuong Tran ◽  
Kelvin Mashisia Shikuku ◽  
Jeffrey Peart ◽  
Chin Yee Chan ◽  
Long Chu ◽  
...  

Focusing on economic methods, this study provides a comprehensive review of the current research in fisheries and aquaculture within the context of climate change. We find there has been remarkable progress in evaluating the biophysical impacts of climate change on fish. However, the effect those impacts have on future fish stocks, yields, and dynamics are less understood. Climate change adaptation strategies in fisheries and aquaculture lack quantitative assessment, while current vulnerability indices rely heavily on subjective weighting schemes. Economic studies involving fisheries and aquaculture have seen some recent advancements but can be improved through incorporating methods from other disciplines, notably agricultural economics. Relative to its increasingly large role in global fish supply, the aquaculture sector is found to be under-represented in the economic literature. We suggest that future research in fisheries and aquaculture should further incorporate methods from agricultural economics, focus on the economics of aquaculture, and refine interdisciplinary research methods such as bioeconomic modelling.

2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Amsalu Woldie Yalew

Purpose Climate change affects the geographic and seasonal range of malaria incidence, especially, in poor tropical countries. This paper aims to attempt to conceptualize the potential economic repercussions of such effects with its focus on Ethiopia. Design/methodology/approach The paper is conceptual and descriptive in its design. It first reviews existing literature and evidence on the economic burdens of malaria, and the impacts of climate change on malaria disease. It then draws the economic implications of the expected malaria risk under the future climate. This is accompanied by a discussion on a set of methods that can be used to quantify the economic effects of malaria with or without climate change. Findings A review of available evidence shows that climate change is likely to increase the geographic and seasonal range of malaria incidence in Ethiopia. The economic consequences of even a marginal increase in malaria risk will be substantial as one considers the projected impacts of climate change through other channels, the current population exposed to malaria risk and the country’s health system, economic structure and level of investment. The potential effects have the potency to require more household and public spending for health, to perpetuate poverty and inequality and to strain agricultural and regional development. Originality/value This paper sheds light on the economic implications of climate change impacts on malaria, particularly, in Agrarian countries laying in the tropics. It illustrates how such impacts will interact with other impact channels of climate change, and thus evolve to influence the macro-economy. The paper also proposes a set of methods that can be used to quantify the potential economic effects of malaria. The paper seeks to stimulate future research on this important topic which rather has been neglected.


2014 ◽  
Vol 11 (2) ◽  
pp. 2483-2514 ◽  
Author(s):  
P. Roudier ◽  
A. Ducharne ◽  
L. Feyen

Abstract. This review summarizes the impacts of climate change on runoff in West Africa, assesses the uncertainty in the projections and describes future research needs for the region. To do so, we constitute a meta-database made of 19 studies and 301 future runoff change values. The future tendency in streamflow developments is overall very uncertain (median of the 301 points is 0% and mean +5.2%), except for (i) the Gambia River which exhibits a significant negative change (median = −4.5%) and (ii) the Sassandra and the Niger Rivers where the change is much more positive (+14.4 and +6.1%). A correlation analysis revealed that runoff changes are tightly linked to changes in rainfall (R = 0.49), and to a smaller extent also to changes in PET. Other parameters than climate such as the carbon effect on plant water efficiency, land use dynamics or water withdrawals could also significantly impact on runoff, but they generally do not offset the effects of climate change. In view of the potential changes, the large uncertainty therein, and the high vulnerability of the region to such changes, there is an urgent need for integrated studies that quantify the potential effects of these processes on water resources in West Africa. We especially underline the lack of information concerning projections of future floods and droughts, and of inter-annual fluctuations in streamflows.


Author(s):  
Wilfrid Greaves

This article examines the implications of human-caused climate change for security in Canada. The first section outlines the current state of climate change, the second discusses climate change impacts on human security in Canada, and the third outlines four other areas of Canada’s national interests threatened by climate change: economic threats; Arctic threats; humanitarian crises at home and abroad; and the threat of domestic conflict. In the conclusion, I argue that climate change has clearly not been successfully “securitized” in Canada, despite the material threats it poses to human and national security, and outline directions for future research.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Simon Kapitza ◽  
Pham Van Ha ◽  
Tom Kompas ◽  
Nick Golding ◽  
Natasha C. R. Cadenhead ◽  
...  

AbstractClimate change threatens biodiversity directly by influencing biophysical variables that drive species’ geographic distributions and indirectly through socio-economic changes that influence land use patterns, driven by global consumption, production and climate. To date, no detailed analyses have been produced that assess the relative importance of, or interaction between, these direct and indirect climate change impacts on biodiversity at large scales. Here, we apply a new integrated modelling framework to quantify the relative influence of biophysical and socio-economically mediated impacts on avian species in Vietnam and Australia and we find that socio-economically mediated impacts on suitable ranges are largely outweighed by biophysical impacts. However, by translating economic futures and shocks into spatially explicit predictions of biodiversity change, we now have the power to analyse in a consistent way outcomes for nature and people of any change to policy, regulation, trading conditions or consumption trend at any scale from sub-national to global.


2018 ◽  
Vol 23 (3) ◽  
pp. 217-233 ◽  
Author(s):  
Stephane Hallegatte ◽  
Marianne Fay ◽  
Edward B. Barbier

AbstractBecause their assets and income represent such a small share of national wealth, the impacts of climate change on poor people, even if dramatic, will be largely invisible in aggregate economic statistics such as the Gross Domestic Product (GDP). Assessing and managing future impacts of climate change on poverty requires different metrics, and specific studies focusing on the vulnerability of poor people. This special issue provides a set of such studies, looking at the exposure and vulnerability of people living in poverty to shocks and stressors that are expected to increase in frequency or intensity due to climate change, such as floods, droughts, heat waves, and impacts on agricultural production and ecosystem services. This introduction summarizes their approach and findings, which support the idea that the link between poverty and climate vulnerability goes both ways: poverty is one major driver of people's vulnerability to climate-related shocks and stressors, and this vulnerability is keeping people in poverty. The paper concludes by identifying priorities for future research.


2009 ◽  
Vol 3 (1) ◽  
pp. 123-126 ◽  
Author(s):  
S. M. Attaher ◽  
M. A. Medany ◽  
A. F. Abou-Hadid

Abstract. The overall agricultural system in the Nile Delta region is considered as one of the highest intensive and complicated agriculture systems in the world. According to the recent studies, the Nile Delta region is one of the highly vulnerable regions in the world to climate change. Sea level rise, soil and water degradation, undiversified crop-pattern, yield reduction, pests and disease severity, and irrigation and drainage management were the main key factors that increased vulnerability of the agriculture sector in that region. The main objective of this study is to conduct a community-based multi-criteria adaptation assessment in the Nile Delta using a preset questionnaire. A list of possible adaptation measures for agriculture sector was evaluated. The results indicated that the Nile Delta growers have strong perceptions to act positively to reduce the impacts of climate change. They reflected the need to improve the their adaptive capacity based on clear scientific message with adequate governmental support to coop with the negative impacts of climate change.


Water ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2201 ◽  
Author(s):  
Feng Zeng ◽  
Ming-Guo Ma ◽  
Dong-Rui Di ◽  
Wei-Yu Shi

Separating the impact of climate change and human activities on runoff is an important topic in hydrology, and a large number of methods and theories have been widely used. In this paper, we review the current papers on separating the impacts of climate and human activities on runoff, summarize the progress of relevant research methods and applications in recent years, and discuss future research needs and directions.


Author(s):  
Iñigo J. Losada ◽  
Paula Camus ◽  
Alexandra Toimil ◽  
Antonio Espejo ◽  
Cristina Izaguirre

Coastal engineers play a leading role in assessing climate change impacts in coastal and low-lying areas and in the design and implementation of adaptation solutions to build resilient coastal systems. Given the continuous growth of coastal communities and assets along the world coastlines, the need to protect and preserve natural and socioeconomic coastal systems and the escalating impacts of climate change (Wong et al. 2014), there is an urgent demand by decision makers for coastal engineering practice dealing with risk assessment and adaptation under high levels of uncertainty.


2012 ◽  
Vol 37 (2) ◽  
pp. 206-226 ◽  
Author(s):  
Cherith A. Moses

Rock coasts are widespread in the tropics and exhibit particular morphologies that may be specific to their tropical, micro-tidal location. Notches are particularly well developed, often linked to onshore cliffs and fronted by subhorizontal platforms. Through a review of previously published data across the tropics, average cliff face erosion rates are calculated as 2.15 ± 2.62 mm a−1, intertidal erosion rates 3.03 ± 7.50 mm a−1 and subtidal erosion rates 0.96 ± 0.44 mm a−1. Intertidal erosion rates are variable within and across latitudinal ranges: within 10°N and S of the equator average rates are 1.42 ± 1.22 mm a−1; between latitudes of 10°and 20°, 0.88 ± 1.16 mm a−1 and between latitudes of 20°and 30°, 2.04 ± 2.57 mm a−1. A consideration of temporal variations in intertidal erosion rates provides insights into the potential impacts of climate change on the erosion dynamics of rock coasts in the tropics. This paper highlights some of the interactions over time and space between process and measurement that continue to limit our understanding of, and ability to model, the erosion dynamics of tropical rock coasts. It concludes by identifying potentially fruitful areas for future research.


2018 ◽  
Vol 26 (1) ◽  
pp. 82-92 ◽  
Author(s):  
James D. Ford ◽  
Nicole Couture ◽  
Trevor Bell ◽  
Dylan G. Clark

This paper identifies and characterizes current knowledge on climate change impacts, adaptation, and vulnerability for Canada’s northern coastline, outlining key research gaps. Warming temperatures and increased precipitation have been documented across the northern coast, with the rate of sea ice decline ranging from 2.9% to 10.4% per decade. Storm intensity and frequency is increasing, and permafrost is warming across the region. Many of these changes are projected to accelerate in the future, with in excess of 8 °C warming in winter possible under a high-emission scenario by 2081–2100. Vulnerability to these changes differs by region and community, a function of geographic location, nature of climate change impacts, and human factors. Capacity to manage climate change is high in some sectors, such as subsistence harvesting, but is being undermined by long-term societal changes. In other sectors, such as infrastructure and transportation, limitations in climate risk management capacity result in continuing high vulnerabilities. There is evidence that adaptation is taking place in response to experienced and projected impacts, although readiness for adaptation is challenged by limited resources, institutional capacity, and a need for support for adaptation across levels of government. Priority areas for future research include (i) expanding the sectoral and geographic focus of understanding on climate change impacts, adaptation, and vulnerability; (ii) integrating climatic and socio-economic projections into vulnerability and adaptation assessments; (iii) developing an evidence base on adaptation options; and (iv) monitoring and evaluating the effectiveness of adaptation support. Cross-cutting themes for advancing climate change impacts, adaptation, and vulnerability research on the north coast more broadly include the need for greater emphasis on interdisciplinary approaches and cross-cultural collaborations, support for decision-orientated research, and focus on effective knowledge mobilization.


Sign in / Sign up

Export Citation Format

Share Document