scholarly journals Isolation, Characterization and Antibacterial Activities of Lactic Acid Bacteria Isolated From Batak's Special Food "Dali Ni Horbo”

2020 ◽  
Vol 18 (1) ◽  
pp. 1
Author(s):  
Muhammad Hasan Basri Nasution ◽  
Shafira Ramadhani ◽  
Edy Fachrial

Lactic Acid Bacteria (LAB) are gram-positive bacteria that are rod or round in shape, do not form spores, and do not have cytochromes. LAB can be isolated from fermented food products. LAB is useful to inhibit the growth of pathogenic bacteria so that they are potential antibacterial sources. The purpose of this study was to isolate LAB from the traditional food Dali Ni Horbo, continued with characterization, antimicrobial testing, and sensitivity testing towards several antibiotics. From the results of the study, the number of colonies obtained was 2.4 x 107 CFU/mL. 6 isolates were randomly selected, coded as isolates UPDH1, UPDH2, UPDH3, UPDH4, UPDH5, UPDH6, respectively. Biochemical characterization showed that the isolates were gram-positive and catalase-negative bacteria.  Results of antibiotic sensitivity testing using 6 antibiotics, namely amoxicillin (AML), erythromycin (E), oxacillin (OX), ofloxacin (OFX), cefotaxime (CTX), and gentamicin (CN), showed that all the isolates were resistant to CTX. The UPDH1 isolate was resistant to AML and OX. The UPDH3, UPDH5, and UPDH6 isolates were resistant to AML, and the UPDH4 isolate was resistant to E, OFX, CTX, CN, and OX. Antimicrobial tests used the disk diffusion method against Escherichia coli and Staphylococcus aureus. The UPDH2 isolate, gave an inhibition zone of 6.7 mm, and UPDH5 and UPDH6 gave inhibition zones of 7.6 mm and 8.5 mm respectively, against E. coli. Microbial inhibition tests against S. aureus by UPDH1, UPDH2, UPDH5 and UPDH6 gave inhibition zones of 13.5 mm, 9.0 mm, 12.1 mm and 12 mm respectively. From the results in this research it can be concluded that the traditional food Dali Ni Horbo is a potential source of probiotics.

2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S386-S386
Author(s):  
Susan M Novak-Weekley ◽  
Aye Aye Khine ◽  
Tino Alavie ◽  
Namidha Fernandez ◽  
Laxman Pandey ◽  
...  

Abstract Background Conventional antimicrobial susceptibility testing (AST) of microorganisms from positive blood cultures (PBC) can take ≥ 2 days. In order to improve the turnaround time for AST on a PBC, CLSI and EUCAST have made efforts to standardize procedures for disk diffusion (DD) direct from a PBC. Qvella Corporation (Richmond Hill, ON, Canada) has recently developed FAST-Prep, an automated centrifugal sample preparation system that rapidly delivers a Liquid Colony consisting of a purified, concentrated, viable cell suspension directly from a PBC. This study was performed to investigate the feasibility of DD AST off of a PBC using a FAST-Prep Liquid Colony. Methods Contrived PBC samples were prepared by spiking 6 species of Gram-positive and 4 species of Gram-negative bacteria (3-5 strains per species) into FA® Plus bottles and incubating in the BACT/ALERT® VIRTUO® System (bioMerieux, Durham, NC). After positivity, 3 mL of PBC was added to the FAST-Prep cartridge. After 20 minutes of processing in the FAST-Prep instrument, the Liquid Colony was removed from the cartridge and a 0.5 McFarland sample was prepared for DD AST. In parallel, the DD AST from a PBC was performed using 4 drops of PBC (CLSI direct method). Both methods were compared to conventional colony-based DD AST. After 16-18 hours of incubation zone diameters and S/I/R interpretations were determined. Categorical agreement (CA) and errors for both DD AST methods were calculated. In addition, colony plate counting was performed on 0.5 McFarland suspensions of Liquid Colony and the plate colony to determine biomass recovery and sample purity. Results CA for a FAST-Prep DD AST for Gram-positive and Gram-negative bacteria was 95.6% and 98.6%, respectively, compared to CA for CLSI DD AST of 77.2% and 81.9%, respectively. Biomass in the Liquid Colony was 7.2x108 and 1.2x109 CFU for Gram-positive and Gram-negative bacteria, respectively. Cell concentration in the 0.5 McFarland suspension of the Liquid Colony was 3.7x107 and 5.9x107 CFU/mL for Gram-positive and Gram-negative bacteria, respectively, which was similar to the concentration for the reference colony suspension. Conclusion The results support the potential role of FAST-Prep in providing a Liquid Colony for use in rapid AST. Disclosures Susan M. Novak-Weekley, PhD, D(ABMM), Qvella (Employee, Shareholder) Aye Aye Khine, PhD, Qvella (Employee, Shareholder) Tino Alavie, PhD, Qvella (Employee) Namidha Fernandez, MS, Qvella (Employee) Laxman Pandey, MS, Qvella (Employee) Abdossamad Talebpour, PhD, Qvella (Employee, Shareholder)


Agric ◽  
2019 ◽  
Vol 31 (1) ◽  
pp. 53-66
Author(s):  
Samsul Rizal ◽  
Julfi Restu Amelia ◽  
Suharyono A S

Sinbiotic drinks have a very acidic taste, so it is necessary to add sucrose solution to get the best taste. This study aims to determine the effect of adding 65% (v/v) sucrose solution to changes in antibacterial activity of green grass jelly synbiotic drinks during storage in cold temperatures. The finished green grass jelly synbiotic product was given two different treatments, namely the product without the addition of sucrose solution and product with the addition of 10% (v/v) of 65% (b/v) sucrose solution. The product was stored for 28 days at a cold temperature of ± 10oC. Observations were carried out every 7 days for antibacterial activity, pH, total acid, and total lactic acid bacteria. Antibacterial activity was evaluated using the agar diffusion method against pathogenic bacteria including Staphylococcus aureus, Salmonella sp., Bacillus cereus, and Eschericia coli. The results showed that the antibacterial activity, pH, and total lactic acid bacteria of green grass jelly synbiotic drinks both without and with the addition of 65% (b/v) sucrose as much as 10% (v/v) reduced during storage at cold temperatures, while total acid increases. There was no significant difference between the antibacterial activity and the characteristics of the green grass jelly synbiotic drink given 65% sucrose solution and without the addition of 65% sucrose solution. Thus the study concluded that the addition of 65% sucrose solution to increase the preference for the product did not significantly affect the change in antibacterial activity of the green grass jelly synbiotic beverage during storage in cold temperatures.


2020 ◽  
Vol 16 (2) ◽  
Author(s):  
P. M. Ridzuan ◽  
Hairul Aini Hamzah ◽  
Anis Shah ◽  
Norazian Mohd Hassan ◽  
Baharudin Roesnita

Antibacterial activity of different types of P. odorata leaf extracts was evaluated in combination with standard antibiotics. Persicaria. odorata leaves were extracted with n-hexane (n-hex), dichloromethane (DCM) and methanol (MeOH).  Each extract was applied on vancomycin (30µg), erythromycin (15µg) and gentamicin (10µg) discs, respectively. Disk diffusion method was used to evaluate the synergistic activity of each combination on Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus pyogenes, Streptococcus pneumoniae, Pseudomonas aeruginosa, Salmonella typhi, and Escherichia coli. Minimum inhibitory concentration (MIC) and gas chromatography mass spectrometry (GCMS) analysis was performed on the active extract. Synergistic effects seen were mainly from the n-hex+antibiotics combinations, mainly on the Gram-positive bacteria (7 additive, 5 antagonistic), with MIC range from 50 µg/ml to 100 µg/ml, as well as Gram-negative bacteria (2 additive, 2 indifferent, 5 antagonistic). In particular, synergism showed by the combination of n-hex+van were all additive against the susceptible bacteria. DCM extract combination showed synergistic effects on three Gram-positive species (S. aureus, S. epidermidis, S. pyogenes). Meanwhile, MeOH+antibiotics combination showed significant additive synergistic effects (p<0.05) on S. aureus and S. epidermidis.  The major compounds of leaves extract were decanal and β-citral. n-Hex extract superiorly inhibited Gram-positive bacteria growth as compared to DCM and MeOH extracts. The additive synergistic property of the n-hex P. odorata extract could be further studied for possible use as an antibacterial agent.


2020 ◽  
Vol 21 (4) ◽  
Author(s):  
Usman Pato ◽  
YUSMARINI YUSUF ◽  
SHANTI FITRIANI ◽  
NIA NAIDYA JONNADI ◽  
MIMI SRI WAHYUNI ◽  
...  

The use of natural preservatives called bacteriocin derived from lactic acid bacteria (LAB) is one way of preventing food from being contaminated by pathogenic microorganisms such as L. monocytogenes (LM). The aims of this study were to evaluate the ability of LAB isolated from dadih to inhibit the growth of LM and to obtain the antimicrobial components that play a role in inhibiting the growth of LM. The antimicrobial activity of the supernatant obtained from 12 strains of dadih LAB was determined using the paper disk diffusion method. The results showed that the supernatant from the 12 LAB strains was able to inhibit the growth of LM with various inhibition zones. However, out of the 12 LABs, only 9 strains were found to have an inhibition zone of more than 3.5 mm.  The antimicrobial compounds of 9 strains were tested and it was found that the antimicrobial compounds of strains R-8, R-14 and R-49 were derived from lactic acid. In addition, 6 strains namely R-43, R-32, R-19, R-55, R-45 and R-41 were derived from bacteriocin based on their sensitivity to pH, heat and enzyme treatments. Crude bacteriocin derived from 6 LAB strains inhibited the growth of LM, and the highest antimicrobial activity was obtained in Streptococcus faecalis subsp. liquefaciens R-55 with an average inhibition zone of 13.87 mm. Bacteriocin produced by strain R-55 can be used as natural preservatives for the prevention of food-borne disease caused by LM.


2015 ◽  
Vol 1 (2) ◽  
pp. 126
Author(s):  
Urnemi ◽  
Sumaryati Syukur ◽  
Endang Purwati ◽  
Sanusi Ibrahim ◽  
Jamsari

ABSTRACT Lactic acid bacteria (LAB) were isolated from of cocoa beans fermentation Forestero variety from West Sumatera, that were eleven isolates. The isolates were tested to antimicrobial activity against pathogenic bacteria E.coli NBRC 14237, Staphylococcus aureus NBRC 13276, Bacillus subtilis BTCCB 612, listeria m. dan S. Typhii. Results the research showed that, isolates had inhibition zone to pathogenic bacteria, that were 7 mm till 12 mm at 48 hours observation. R2.4 isolate was most potential to inhibition zones growth pathogenic bacteria, that was 11mm till 12 mm to five pathogens. R2.4 isolates was the highest to against pathogenic bacteria (Bacillus subtilis BTCCB, Listeria monocytogenesis and Staphylococcus aureus NBRC) had inhibition zones, that was 12.00 mm till 48 hours. Listeria monocytogenesis had been known as pest bacterium of food born, so that R2.4 isolate can be used as food biopreservative. Crude of R2.4 isolate molecular weight was 10 kDa by SDS-PAGE.  Key words: Lactic acid bacteria, Antimicrobial activity, SDS-PAGE, Cocoa fermentation and food biopreservative                                                      


Author(s):  
Agnes Lee Chiu Nee ◽  
Mohd Nizam Lani ◽  
Rozila Alias ◽  
Zaiton Hassan

Vinegars are most widely used as preservatives in food industry. Vinegars are known for their health benefits; however, the roles of vinegar-associated microflora in locally produced vinegars are not well established. The objectives of this study are to isolate and identify the lactic acid bacteria (LAB) from black rice vinegar and coconut vinegar, measure their pH and titratable acidity, and determine their antibacterial activity. LAB was isolated using cultural method. Phenotypic characterization of LAB was carried out using Gram-staining, oxidase test, catalase test and API 50 CHL Kit. Results from API 50 CHL Kit confirmed that BRV03M strain from black rice vinegar and CV03M strain from coconut vinegar were Lactobacillus paracasei ssp. paracasei. The identified bacteria in both samples were consistent as L. paracasei using 16S rDNA gene sequences with 93% and 99% similarity, respectively. The pH and titratable acidity percentage of both vinegars were also determined. The stability of Cell Free Supernatant-Lactic Acid Bacteria (CFS-LAB) strains within 14 days on their inhibition against selected pathogenic bacteria was determined using agar well diffusion method. The CFS-LAB strain isolated from black rice vinegar (BRV03M) was more stable within 14 days than coconut vinegar in inhibiting tested bacteria, suggesting this strain has great potential as natural antibacterial agents.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Christine N’tcha ◽  
Haziz Sina ◽  
Adéchola Pierre Polycarpe Kayodé ◽  
Joachim D. Gbenou ◽  
Lamine Baba-Moussa

The aim of this study was to investigate the antibacterial effect of the crude starter “kpètè-kpètè” and lactic acid bacteria used during the production of “tchoukoutou.” To achieve this, a total of 11 lactic acid bacteria and 40 starter samples were collected from four communes. The samples were tested on 29 gram + and − strains by disk diffusion method. The minimum inhibitory and bactericidal concentrations of starter and lactic acid bacteria were determined by conventional methods. Organic acids, sugar, and volatile compounds were determined using the HPLC method. The “kpètè-kpètè” displays a high antibacterial activity against the tested strains. The most sensitive strain wasS. epidermidis(12.5 mm) whereas the resistance strain wasProteus mirabilis(8 mm). All the tested ferment has not any inhibitory effect onEnterococcus faecalis. The lactic acid bacteria isolates of Parakou showed the highest (17.48 mm) antibacterial activity whereas the smallest diameter was obtained with the ferment collected from Boukoumbé (9.80 mm). The starters’ chemical screening revealed the presence of tannins, anthocyanin flavonoids, triterpenes, steroids, reducing compounds, and mucilage O-glycosides. These compounds are probably the source of recorded inhibition effect. The lactic acid bacteria of the “kpètè-kpètè” could be used to develop a food ingredient with probiotic property.


Author(s):  
R. C. Osaro-Matthew ◽  
O. G. Nweke

Aim: This study’s aim was to determine the antibiotics resistant profile of lactic acid bacteria isolated from poultry and swine faeces. Study design: Faecal samples from swine and birds were randomly collected from livestock and poultry farms located in Umuahia metropolis, Abia State. Place and duration of study: Department of microbiology, Michael Okpara University of Agriculture Umudike, between January 2019 to August 2019. Methodology: A total of 12 faecal samples, 6 each from swines and birds were examined for the presence of lactic acid bacteria using  Deman Rogosa Sharpe agar supplemented with 0.3% CaCO3 (w/v). Isolates were identified based on their physiological and biochemical characteristics. Antibiotic susceptibility was carried out using disk diffusion method. Results: Of the 12 faecal samples examined, all were positive for lactic acid bacteria, with counts ranging from 1.74 – 2.36 x 106 in swine and 1.52 – 2.08 x 106 in birds. Total of 14 strains that belong to three genera; Lactobacillus, Lactococcus and Streptococcus were isolated, genus Lactobacillus occurred highest 8(57.1%). The isolates showed multidrug resistance and exhibited high rate of resistance to Augmentin (100%), Ceftazidime (100%), Cefotaxime (92.9%), Erythromycin (85.7%), Ceftriaxone (71.4%) and Azithromycin (71.4%). Conclusion: The antibiotic resistance pattern of the isolated lactic acid bacteria is a clear indication that most animal farmers are misusing antibiotics. Therefore, animal farmers should be advised on antibiotic application safety measures.


2021 ◽  
Vol 49 ◽  
Author(s):  
Juliana Sousa Bogea ◽  
Luciane Manto ◽  
Jucilene Sena Dos Santos ◽  
Lara Franco Dos Santos ◽  
Franciele Maria Gotardo ◽  
...  

Background: Listeria monocytogenes is a pathogenic bacterium that can contaminate food and cause public health problems due its ability to form biofilms and resistance to sanitizers, it is responsible for sanitary and economic losses in food producing establishments. The difficulties in controlling biofilms and increasing resistance to traditional antibacterial agents is motivating studies of alternative potential biological agents for the control of pathogenic biofilms, among which lactic acid bacteria (LABs) are included. The objective of this work was to evaluate the activity of LABs against Listeria monocytogenes biofilm formation on polystyrene plates, a surface commonly used in the food industry.Materials, Methods & Results: Lyophilized commercial strains of Bifidobacterium animalis, Lactobacillus fermentum, Lactobacillus plantarum, Lactobacillus salivaris and Lactobacillus acidophilus were used. The strain of Listeria monocytogenes (L4) was isolated from polystyrene mats from a poultry slaughterhouse cutting room and demonstrated the ability to attach to microplates and resistance to sanitizers (sodium hypochlorite and hydrogen peroxide) at all times, temperatures and tested surfaces. The antimicrobial activity of LABs was evaluated by the agar diffusion method. The LABs that presented action on Listeria monocytogenes were selected for the inhibition and/or removal of biofilms in microplates, and all experiments were carried out in triplicate. Only Bifidobacterium animalis and Lactobacillus plantarum demonstrated action against Listeria. monocytogenes in the agar diffusion assays and were selected for inhibition and competition assays. Furthermore, competition of LABs against Listeria monocytogenes adhesion was evaluated. There was no significant difference between LABs and Listeria monocytogenes, alone or in combination, at temperatures of 30ºC and 37ºC in the Listeria monocytogenes inhibition assays on polystyrene surface. The lactic acid bacteria evaluated did not demonstrate inhibition of Listeria monocytogenes adhesin testes with optical density visualization, however, it was possible to identify a reduction in Listeria monocytogenes counts with the application of Bifidobacterium animals and Lactobacillus plantarum in the testes of competition against biofilm formation. In competition tests Bifidobacterium animalis and Lactobacillus plantarum have an injunction in Listeria monocytogenes, indicating that these lactic acid bacteria can retard Listeria biofilm formation on polystyrene surfaces and thus help control the pathogen in the food industry.Discussion: A potential mechanism to control biofilm adhesion and formation of pathogens for nutrients and fixation on surfaces, multiplication factors and surfaces are a challenge in controlling biofilms of pathogenic microorganisms, alternative measures to traditional methods for inactivating pathogens and biofilm formers bacteria are necessary. In this sense, lactic acid bacteria generate high levels of bacteriocin and are effective in inhibiting the biofilm of pathogenic bacteria, however, our study did not reveal this. We verified that Bifidobacterium animalis and Lactobacillus plantarum have an inhibitory action on Listeria monocytogenes, indicating that these lactic acid bacteria can be used to delay the formation of biofilms by Listeria on polystyrene surfaces, helping to control this pathogen in food industry.Keywords: control of biofilm, pathogenic bacteria, food industry, polystyrene surface, FTDs.


Author(s):  
Chiamaka Linda Mgbechidinma ◽  
Caleb Oladele Adegoke ◽  
Samuel Temitope Ogunbanwo

This research focused on the isolation and antagonistic action of Lactic Acid Bacteria (LAB) against certain antibiotics resistance disease causing bacteria and fungai. Antibiotic resistance is an increasing problem amid humans and animals in land-dwelling or marine environments hence making treatment of infections difficult. Antibiotic susceptibility test for bacteria pathogen was performed using the disc diffusion method while antifungal susceptibility and antimicrobial activity of LAB were carried out using agar well diffusion method. All the pathogenic bacteria used as indicator organisms were multiple antibiotics resistance and 100 percent resistance to gentamycin and pefloxacillin with the exception of Staphlococcus aureus. Candida species was 100 percent resistance to Ketoconazole, fluconazole and miconazole. Twenty-two LAB isolates were gotten from fermented milk and milk products. The isolates were identified as Lactobacillus plantarum, Lactobacillus fermentum, Lactobacillus delbrueckii, Leuconostoc mesenteriodes, Lactobacillus casei, Lactobacillus brevis, Lactobacillus acidophilus, Lactococcus lactis, Streptococcus thermophilus, Lactobacillus helveticus and Lactobacillus rhamnosus. LAB produced lactic acid to varying concentrations, having its production peak (1.80g/L) at 48 h of incubation by Lactobacillus plantarum. Lactobacillus fermentumNU2 produced the highest quantity of diacetyl (2.80g/L) while Lactobacillus acidophilusGO8 and Lactococcus lactisGO9 produced the highest amount of hydrogen peroxide (0.030g/L) at 48 h of incubation. Lactobacillus plantarumGO16 inhibited Bacillus cereus while Lactobacillus acidophilusGO8 inhibited Staphylococcus aureus with 28 mm zone of inhibition. Lactobacillus plantarumNU1 and Lactobacillus plantarumGO16 inhibited Candida albican with 25 mm zone of inhibition. LAB can be used as probiotics in preventing infections caused by Candida species and pathogenic bacteria. Keywords: Lactic Acid Bacteria, Fermented milk, antibiotics resistance, antagonistic activity, pathogens.


Sign in / Sign up

Export Citation Format

Share Document