scholarly journals Underground Space for Infrastructure Development and Engineering Geological Challenges in Tunneling in the Himalayas

2008 ◽  
Vol 1 ◽  
pp. 43-49
Author(s):  
Krishna Kanta Panthi

Being topographically steep and consisting of many rivers originating from the glaciers of the Himalaya, Nepal is gifted in water resources. As a developing country, Nepal needs to accelerate to develop its crucial infrastructures for the economic prosperity of the nation. This is achievable by developing the enormous hydropower potential available, making short and efficient roads through the steep mountain topography, extracting mines for various purposes, and providing cost effective solutions for the storage facilities. These developments are not possible unless tunnels and underground caverns are used. Due to tectonic activity, however, the rock mass in Nepal and across the Himalayan region is somewhat different in their engineering behaviour. These differences in mechanical behaviour are mainly caused by a high degree of folding, faulting, shearing, fracturing and deep weathering. As a result, severe instability problems associated with this complex geological setup have to be faced during tunnelling. This is the major challenge to be addressed in a scientific manner in order to make tunnel option more cost effective, feasible and safer. This paper delineates the possible areas where tunnels and underground caverns are needed and may play an important role in the socio-economic development of the nation, discusses the major geological challenges faced while tunnelling, and briefly describes methodologies to be used for analysing geological uncertainties. Key words: Himalayan geology, tunnelling, Nepal Hydro Nepal: Journal of Water, Energy and Environment Vol. I, Issue No. 1 (2007) pp. 43-49

2013 ◽  
Vol 2013 ◽  
pp. 1-14 ◽  
Author(s):  
Amitava Ghosh ◽  
Prithviraj Chakraborty

Objective. Frusemide loaded calcium alginate micropellets, an oral microparticulate delivery system, was statistically optimized exhibiting prolonged therapeutic action minimizing its adverse effects.Methods. Ionotropic Gelation technique was adopted employing 32Factorial designs and keeping the entire process free from organic solvents. Physicochemical and the release characteristics of the prepared formulations were studied, keeping variations only in sodium alginate (primary polymer) and Acrycoat E30D (copolymer) dispersion.Result. Sodium alginate was predominant over Acrycoat E30D in all batches. Nonadditives or interaction was observed to be insignificant. Multiple regressions produced second-order polynomial equation, and the predictive results obtained were validated with high degree of correlation. Thein vivostudy applauded that optimized calcium alginate micropellets of frusemide can produce a much greater diuretic effect over an extended period of 24 hours.Conclusion. This study reveals that the potential of a single dose of the mathematically optimized micro pellets of frusemide formulation is sufficient in the management of peripheral edema and ascites in congestive heart failure and as well in the treatment of chronic hypertension, leading to better patient compliance, and can be produced with minimum experimentation and time, proving far more cost-effective formulation than the conventional methods of formulating dosage forms.


Author(s):  
P A Bracewell ◽  
U R Klement

Piping design for ‘revamp’ projects in the process industry requires the retrieval of large amounts of ‘as-built’ data from existing process plant installations. Positional data with a high degree of accuracy are required. Photogrammetry, the science of measurement from photographs, was identified in Imperial Chemical Industries plc (ICI) as a suitable tool for information retrieval. The mathematical formulation enabling the definition of three-dimensional positions from photographic information is described. The process of using ICI's photogrammetric system for the definition of complete objects such as structures and pipes is illustrated. The need for specialized photogrammetric software for design purposes is explained. A case study describing how the photogrammetric system has been applied is described and graphical outputs from this exercise are shown. It is concluded that this particular photogrammetric system has proved to be a cost effective and accurate tool for the retrieval of ‘as-built’ information.


2012 ◽  
Vol 8 ◽  
pp. 34-37
Author(s):  
Arshad Ali ◽  
Hashim Nissar Hasim ◽  
Ashfaq Ahmad ◽  
Intikhab Ahmad Qureashi

Pakistan is subjected to rapid water shortage due to different social and environmental problems. Moreover, the drinking water is being contaminated at an alarming rate that is mostly due to the discharge of untreated domestic and industrial effluent and agricultural run-off. Therefore, this study was designed to evaluate the water quality problems of the subject area and to determine a cost effective treatment technique. The main objective was to determine the removal efficiency of microbial contamination using flocculant settling. The main pollutants identified by conducting water quality tests are arsenic, fluoride, nitrates and microbial contamination. The maximum concentration of arsenic, fluoride, nitrates and microbial contamination were observed as 12ppb, 2.2mg/L, 26mg/L and 84 colonies/100mL, respectively. During discrete settling tests performed in a 12cft column, it was noticed that the removal of microbial contamination corresponding to a detention time of 225min is 26.7% only. While working on different coagulants, it was observed that the optimum alum, lime and magnesium dosage for the removal of microbial contamination is 31.5mg/L, 10.5mg/L and 27mg/L respectively. The final results of the study suggest that the use of lime as a coagulant to improve the quality of water in terms of microbial contamination is an effective and reliable technique, both in terms of its treatability performance and cost-effectiveness, which was noticed to be 77.7%.DOI: http://dx.doi.org/10.3126/hn.v8i0.4909Hydro Nepal: Journal of Water, Energy and Environment Issue No. 8, 2011 JanuaryPage: 34-37Uploaded date: 17 June, 2011


2008 ◽  
Vol 1 ◽  
pp. 15-21
Author(s):  
Rajendra P. Thanju

Hydropower is one of the cleanest, renewable and environmentally benign sources of energy. Nepal is blessed with immense source of water resources and huge hydropower potential. The Kali Gandaki ‘A’ (KGA) Hydroelectric Project is the largest hydropower project constructed so far in Nepal. The project is a daily pondage type scheme with an installed capacity of 144 MW. The KGA is one of the first largest hydropower projects that has been well studied environmentally and socially in the pre-project, construction and operation stages. A full team of multi-disciplinary professionals was involved during the construction phase to monitor environmental impacts and compliance with contract clauses, and to implement the mitigation measures. Implementation of KGA in what was once considered as a remote area, has resulted in multifold beneficial impacts to the local community. Improvement of public infrastructure, enhanced educational facilities and employment of local populations, including affected families during project construction and operation phase, have enhanced the quality of rural lives. The KGA operation has contributed significantly to Nepal’s power system and has boosted the economic development of the country. Key words: Hydropower; environmental monitoring; impacts; mitigation; resettlement; Nepal Hydro Nepal: Journal of Water, Energy and Environment Vol. I No. 1, 2007 pp. 15-21


2013 ◽  
Vol 12 ◽  
pp. 39-44 ◽  
Author(s):  
Kaspar Vereide ◽  
Leif Lia ◽  
Laras Ødegård

Investments in hydropower pumped storage projects (PSP) are subjected to a high degree of uncertainty. In addition to normal uncertainties in hydropower schemes, the profit of a pumped storage scheme is dependent on the margin between power prices for buying and selling, which is difficult to predict without a power purchase agreement (PPA). A PSP without a PPA and without known construction costs requires quantification of the uncertainties in order to make qualified decisions before investing in such projects. This article demonstrates the advantages of using Monte Carlo (MC) simulations as a tool in the economic analysis of PSPs. The method has been tested on a case study, namely the Tamakoshi-3 Hydropower Project (HPP) in Nepal. The MC method is used to calculate the probability distribution of the net present value of installing reversible units in the Tamakoshi-3 HPP. The calculations show that PSPs may be profitable in Nepal, given a beneficial development of the power market. The MC method is considered to be a useful tool for economic analysis of PSPs. In this case study of installing reversible units in the Tamakoshi-3 HPP, there are many uncertainties, which the MC simulation method is able to quantify. Hydro Nepal; Journal of Water, Energy and Environment Vol. 12, 2013, January Page: 39-44DOI: http://dx.doi.org/10.3126/hn.v12i0.9031 Uploaded Date : 10/29/2013


1981 ◽  
Author(s):  
R Hull ◽  
J Hirsh

Ascending venography, although the diagnostic standard for deep vein thrombosis (DVT), has important clinical pitfalls and shortcomings. It is invasive and thus not readily repeated: its use is associated with significant discomfort in many patients and in 3-4% of patients post-veno- graphic phlebitis is induced. A high degree of technical and interpretive skill is required and in up to 20% of patients routine ascending venography fails to visualize the external and common iliac veins. In many hospitals, outpatient access is not readily available necessitating admission to hospital for elective venography. Non-invasive testing with impedance plethysmography (IPG) is gaining increasing acceptance and use because it is objective, versatile and free of morbidity. IPG is sensitive and specific for symptomatic proximal DVT, but has the potential limitation that it is insensitive to calf DVT. Because of this, two different non-invasive approaches are currently advocated: a) serial IPG’s to detect calf vein thrombi which extend proximally (advocates of this approach suggest that calf DVT rarely lead to symptomatic pulmonary emboli unless proximal extension occurs) and b) addition of leg scanning to detect calf DVT. The effectiveness of serial IPG’s is uncertain and to resolve this issue we are currently performing a randomized trial. Multiple large studies however demonstrate that because of both high sensitivity and specificity, the combined approach of IPG and leg scanning provides a replacement for venography in the majority of symptomatic patients. Furthermore, the safety of witholding anticoagulant therapy in patients negative by combined IPG and leg scanning has been confirmed by long-term follow-up. Combined IPG and leg scanning is more cost-effective than elective venography because these non-invasive tests are readily performed in the emergency room or clinic, thus preventing unnecessary admission to hospital of patients with clinically suspected DVT who are negative by testing.


Author(s):  
Doudou Nanitamo Luta ◽  
Atanda K. Raji

Hydrogen is likely to play a significant role in the concept of low-carbon power generation in support to renewable energy systems. It is abundant, eco-friendly, highly efficient and have the potential to be more cost-effective than fossil fuels provided that the engineering challenges associated with its safe infrastructure development, economical extraction and storage are solved. Presently, about 50 million metric tons of hydrogen is generated on a yearly basis, most of that is used for oil refining and ammoniac production. Other applications include electric vehicles, power to gas and power generation, etc. This study focuses on the use of hydrogen for power generation. The main goal is to investigate technical and economic performances of a renewable hydrogen-based energy system as an alternative to diesel generators for powering a remote telecoms base station. The proposed energy system consists of a photovoltaic generator, an electrolyser, a fuel cell, a hydrogen tank, a battery storage system and a power-conditioning unit. The system is simulated using Homer Pro software.


2009 ◽  
Vol 3 ◽  
pp. 9-15 ◽  
Author(s):  
Don Messerschmidt

‘Risk' is a major point of focus in the literature on resettlement and reconstruction associated with the impacts of major infrastructure development on project affected individuals and families. Previous approaches to risk appear to emphasize the negative consequences of development, and it is no wonder then that project affected people often emphatically resist development and change. This paper proposes that a more pro-active, positive opportunities and benefits approach be taken in dealing with resettlement and reconstruction associated with large scale infrastructure projects. The discussion is focused on the eight ‘risk factors' (or ‘opportunity factors'?) listed in the well known ‘Impoverishment Risk and Reconstruction' (IRR) Model. Three more such factors are added to the list based on field experience in South Asia. The point is that by emphasizing the potential opportunities and benefits, project affected people are more likely to be supportive of projects that may disrupt their lives. Key words: Resettlement, opportunities, risk, IRR model, South Asia, infrastructure development  doi: 10.3126/hn.v3i0.1912 Hydro Nepal: Journal of Water, Energy and Environment Issue No. 3, January, 2008 Page 9-15


1996 ◽  
Vol 429 ◽  
Author(s):  
Arun K. Nanda ◽  
Terrence J. Riley ◽  
Gary Miner ◽  
Michael F. Pas ◽  
Sylvia Hossain-Pas

AbstractUnder a joint development contract with Applied Materials (AMAT) and Texas Instruments (TI), SEMATECH undertook a project (Joint Development Project J100) with a goal of delivering a cost effective, technically advanced Rapid Thermal Processor (RTP). The RTP tool was specified to meet the present and future manufacturing needs of SEMATECH's member companies. The J100 results contained here will focus on the temperature and control performance of the AMAT RTP tool. The J100 results on the temperature measurement and control performance of AMAT's RTP tool using bare backside monitor wafers were presented in part I. In actual manufacturing environments the backside conditions of wafers are not consistent which causes temperature variations during rapid thermal processing. In this experiment, boron monitor wafers with varying backside conditions were used to test the uniformity, repeatability, and stability of the tool. The wafer backside films were fabricated using predictions from emissivity models and were subsequently verified by experimental techniques. In addition, perturbation experiments utilizing boron and arsenic implanted wafers demonstrated a high degree of localized temperature control across the wafers. A 3-sigma temperature variation ranging from 3.0 °C (for wafers with similar backside films) to 6.0 °C (for wafers with varying backside films) was found for all wafers processed during this evaluation. The perturbation experiments, which included a forced temperature offset of two degrees at one of the wafer temperature sensors, resulted in a noticeable change in sheet resistance across the wafer.


1968 ◽  
Vol 72 (693) ◽  
pp. 817-830
Author(s):  
Henry V. Borst

Summary Tests of the first experimental VTOL aircraft using tiltable wings and propellers indicated that practical operational aircraft are possible and can operate with a high degree of effectiveness. The flight tests accomplished up to the present time with the second generation tilt-propeller and tilt-rotor aircraft are discussed and analysed. The XC-142 and the CL-84 tilt-wing aircraft have been performing well throughout their projected flight envelope and good pilot ratings have been obtained with each in hover, transition, and the normal cruise mode. The X-19 tandem wing tilt propeller was flown only up to 100 knots and was lost due to a structural failure in one nacelle. Although the operation of the aircraft had been satisfactory up to this point, this programme was terminated due to shortage of funds. A study of the various VTOL aircraft configurations operating at low radius of action indicates that the tilt wing/ tilt propeller type are the most cost-effective as long as speed is an important parameter in the operating mission. There are missions where speed is of secondary importance, and therefore, the helicopter will continue to be one of the most effective VTOL for these missions. Since the tilt-wing /tilt-rotor aircraft tend to be only slightly higher in cost than the helicopter and with development the complexity and maintainability will be reduced to acceptable levels, it is anticipated that further work will be done in the development of these vehicles, and successful and useful machines will be built in the future.


Sign in / Sign up

Export Citation Format

Share Document