scholarly journals Heavy Metal Assessment of Kavre Valley Basin River System

2019 ◽  
Vol 24 ◽  
pp. 32-34
Author(s):  
Siddhartha Shakya ◽  
Prekshya Gurung ◽  
Anjal Bohaju ◽  
Dipson Ojha ◽  
Bhim Prasad Kafle

Recent population growth, industrialization and unplanned urbanization have led to an increase in untreated waste disposal directly to the river system, including heavy metals. The present investigation was conducted for assessment of heavy metals in the Kavre valley river basin system. Through this basin, two major rivers Punyamata and Roshi along with their tributaries, flow passing through cities (Banepa, Shree Khandapur and Panauti) and the heavy metals selected were Iron (Fe), Chromium (Cr), Manganese (Mn), Lead (Pb), Zinc (Zn) and Cadmium (Cd). Seven sites were selected on the basis of city size and meeting point of tributaries. Fe, Cr and Mn were examined using UV-spectrophotometry whereas Pb, Zn and Cd were determined using AAS. The highest concentration of Cr, Mn, Fe, Cd, Zn, Pb were determined to be 1.9 μg/L, 22.6 μg/L, 514 μg/L, 340 μg/L, 20 μg/L, 80 μg/L, respectively, with Fe, Cd and Pb exceeding the WHO limits.

Author(s):  
Bronius Jaskelevičius ◽  
Vaida Lynikienė

As a result of global and intense production the waste disposal problems become more and more urgent. Waste processing, utilization and recycling is to a certain extent limited by many economic, organisational and technological factors, and this inevitably encourages waste disposal in landfills. Physical, chemical and biological interactions in landfill cell result in formation of landfill gas and harmful leachate. Because of lack of control, together with usual communal waste, industrial waste was also dumped to landfills, therefore gas and leachate produced include large amounts of toxic compounds. Once hazardous waste materials occured in landfills, later they vastly expanded the whole spectrum of toxic materials and compounds. In the landfill environment chemical properties of surface and ground water and concentration of separate components are governed by seepage of leachate and industrial solutants into soil and ground layers and their transport by subsurface waters. Influence on the environment exerted by heavy metals contained in the leachate of Lapes Landfill is discussed in this paper. Properties of industrial waste material influenced order of the main pollutants: the most important elements in this case are Cu, Ni, Zn, Pb, Mn, Cr and other ions, the sulphides of these metals and other toxic compounds. The First Landfill field is more polluted with heavy metal polutants than the Third field. In all the samples iron concentration is the greatest exceeding even 200 times the admissible value allowed (Norm HN 24:2003). Sources (springs) S11 and S17 are least contaminated with heavy metals. The greatest groundwater pollution was found in monitoring bore G13s. The leachate processed in purification devices is released to the Third stream. Heavy metal concentrations in waters of this stream are low and they further decrease downstream because the pollutants are diluted. Santrauka Masiškai gaminant produkciją, ją vartojant, vis opesnė tampa atliekų problema. Atliekų perdirbimą, utilizavimą iš dalies ribojantys ekonominiai, organizaciniai bei technologiniai veiksniai neišvengiamai skatina atliekas šalinti į sąvartynus. Dėl sąvartyno tūryje vykstančių fizinių, cheminių bei biologinių reakcijų susidaro sąvartyno dujos ir kenksmingas filtratas. Kadangi dėl nepakankamos kontrolės į sąvartynus kartu su buitinėmis, komunalinėmis atliekomis buvo šalinamos pramonės atliekos, susidarančiose dujose bei filtrate yra daug toksiškų junginių. Šią toksinių medžiagų bei junginių įvairovę dar labiau papildo į sąvartynus patenkančios pavojingos atliekos. Gruntinio ir paviršinio upelių vandens cheminę sudėtį ir kai kurių komponentų koncentraciją sąvartyno aplinkoje lemia filtrato ir pramoninių tirpalų įsisunkimo į gruntą mastas bei požeminių tėkmių pernašos. Straipsnyje nagrinėjama Lapių sąvartyno filtrate aptiktų sunkiųjų metalų įtaka aplinkai. Pramonės atliekos lėmė, kad filtrato pagrindiniai teršiantieji elementai yra Cu, Ni, Zn, Pb, Mn, Cr ir kt. jonai, šių metalų sulfidai ir kiti toksiniai junginiai. Pirmasis kaupimosi laukas yra labiau užterštas sunkiaisiais metalais nei trečiasis laukas. Visuose mėginiuose didžiausia yra geležies koncentracija. Ji net iki 200 kartų viršija HN 24:2003 leidžiamąją normą. Mažiausiai sunkiaisiais metalais užteršti šaltiniai (S11 ir S17 postai). Požeminis vanduo labiausiai užterštas G13s gręžinyje. Iš valymo įrenginių išvalytas filtratas yra išleidžiamas į upelį. Šio upelio vandenyje rastų sunkiųjų metalų koncentracijos yra nedidelės, o upeliui tekant tolyn teršalai atskiedžiami, ir metalų koncentracijos mažėja. Резюме Массовое производство продукции, пользование ею все более обостряют проблему отходов. Процессы переработки и утилизации отходов, в определенной степени ограничивающие экономические, организационные и технологические факторы, неизбежно способствуют интенсификации удаления отходов на свалки. На свалках отходов в результате протекающих физических, химических и биологических реакций образуются газы и токсичный фильтрат. Поскольку из-за недостаточного контроля на свалку вместе с бытовыми, коммунальными отходами удалялись и промышленные отходы, в составе образующихся газов и фильтрата имеется много токсичных соединений. Опасные отходы еще более увеличили спектр токсичных материалов и соединений в газах и фильтрате свалки. Химический состав и концентрация отдельных компонентов грунтовых и поверхностных вод в районе свалки определяют проникновение фильтрата и промышленных растворов в грунт и их перенос подземными течениями. В статье изучается влияние тяжелых металлов из фильтрата свалки в Лапес на состояние вод в районе свалки. Промышленные отходы способствовали появлению в фильтрате ионов основных загрязняющих элементов Cu, Ni, Zn, Pb, Mn, Cr, сульфидов этих металлов и других токсичных соединений. Первое поле накопления отходов в большей степени загрязнено тяжелыми металлами, чем третье поле. Во всех опытных образцах воды отмечена самая большая концентрация ионов железа, почти в 200 раз превышающая допустимую норму HN 24:2003. Наименьшее загрязнение тяжелыми металлами отмечено в подземной воде источников (посты S11 и S17). Грунтовые воды больше всего загрязнены в скважине G13s. Поверхностные воды ручьев, в которые проникает фильтрат, а также сливается очищенный фильтрат, содержат небольшие концентрации тяжелых металлов, которые разбавляются течением и уменьшаются.


2019 ◽  
Vol 2 (1) ◽  
pp. 209-228 ◽  
Author(s):  
Yunpeng Lin ◽  
Yunhai Li ◽  
Binxin Zheng ◽  
Xijie Yin ◽  
Liang Wang ◽  
...  

The typhoon process has a significant influence on the distribution of heavy metals in sediments. Based on the heavy metal (V, Cr, Co, Ni, Cu, Zn, Pb, and Mn) contents in surface sediments collected under normal conditions and post-typhoon Matmo in Quanzhou Bay in 2014, the distributions, sources, and impacts of typhoon processes on heavy metals and pollution conditions were studied and discussed. The results showed that the heavy metals can be divided into two categories: Class I metals (Cu, Zn, Pb, and Mn) were mainly distributed in the estuary and significantly increased after the typhoon, and Class II metals (V, Cr, Co, and Ni) were distributed in the coastal intertidal zone and estuary and remained unchanged or decreased after the typhoon. The heavy metal assessment showed that heavy metal pollution in Quanzhou Bay was serious and tended to increase after the typhoon. The increased metal supply and enhanced riverine and tidal hydrodynamics after the typhoon may be the main factors influencing the variations in heavy metal content and distribution. This study provided a basis for the accurate evaluation and scientific management of heavy metal pollution caused by typhoon processes in Quanzhou Bay.


Author(s):  
Godfrida Any Yusriana Dewi ◽  
Steven A Samson ◽  
Usman Usman

Human activities around the estuary of the Manggar river in Balikpapan produce waste disposal and cause heavy metal contamination such as lead (Pb) and cadmium (Cd) in water bodies. The contaminant can endanger the life of aquatic organisms. It can also occurs heavy metal bioaccumulation in the body of the aquatic organisms. The results show that the heavy metal content of Pb and Cd in water, sediment and water biota indicated that the estuary of the Manggar River was contaminated by heavy metals. The content of Pb and Cd in water is 0.276 mg/l and 0.020 mg/l, in sediments is 24.7 mg/kg and 4.52 mg/kg, and in the biota is 4.20 mg/kg and 0.80 mg/kg. This means that fish and shells taken from the waters around the estuary of the Manggar River are not safe for consumption because they can interfere the human health.


2020 ◽  
Vol 18 (6) ◽  
pp. 1050-1064
Author(s):  
Isabel Cipriani-Avila ◽  
Jon Molinero ◽  
Eliza Jara-Negrete ◽  
Miren Barrado ◽  
César Arcos ◽  
...  

Abstract Chemical elements, which are present in drinking water, could vary due to water sources, treatment processes or even the plumbing materials. Most of these elements do not represent a threat, while others, such as heavy metals, have been proven to cause harmful effects over human and aquatic wildlife. In this study, the quality of drinking water in three cities in Ecuador, Quito, Ibarra and Guayaquil was assessed through a multielement analysis and the heavy metal pollution index (HPI). A total of 102 drinking water samples and six natural water samples were collected and analyzed. Within the scope of analysis, results show that water quality complies with local and international guidelines. HPI did not show significant differences in the water that is supplied to the different neighborhoods of the three cities studied. However, actions should be taken to protect the sources of water, especially in Guayaquil, due to the presence of lead and chromium. For instance, lead was found in 2.8% of the samples in concentrations above World Health Organization (WHO) recommended values. Thus, we suggest to assessing the quality and age of the plumbing system within the whole country, in order to avoid drinking water contamination with heavy metals.


2015 ◽  
Vol 3 (1) ◽  
Author(s):  
Wawan Budianta

This study focused on the capability of Clayey soil to retain and release heavy metals. Batch experiment for sample of clayey soil was conducted with several concentrated solutions of heavy metals. The results show that the clayey soil sample may have a relatively high heavy metal retention capacity. This is particularly positive in the context of municipal waste disposal (landfills) in Indonesia Keywords: Adsorption, heavy metal, clayey soil, batch experiment


Antioxidants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1473
Author(s):  
Andrea López-Botella ◽  
Irene Velasco ◽  
Maribel Acién ◽  
Paula Sáez-Espinosa ◽  
José-Luis Todolí-Torró ◽  
...  

Heavy metals are endocrine disruptors which interfere with processes mediated by endogenous hormones of the organism, negatively affecting endocrine functions. Some studies have correlated heavy metal exposure with male infertility. However, the number of studies conducted on humans are limited. Therefore, the aim of this study is to summarize the current knowledge on how heavy metals influence human male fertility. Hence, three distinct databases were consulted—PubMed, Scopus and Web of Science—using single keywords and combinations of them. The total number of identified articles was 636. Nevertheless, by using the inclusion and exclusion criteria, 144 articles were finally included in this work. Results display that the development of adequate instruments for heavy metal assessment may play an important function in human male fertility diagnosis and treatment. Furthermore, clinical trials could be useful to confirm the role of heavy metals in human male fertility diagnosis. Overall, further research is required to fully understand the molecular and cellular basis of the influence of environmental and occupational exposure to heavy metals on human male infertility and reproductive outcomes.


Author(s):  
Qingqing Lu ◽  
Zhengfu Bian ◽  
Noriyoshi Tsuchiya

Aquatic ecosystems continuously receive potentially hazardous heavy metals from natural and anthropogenic sources. Focusing on the origin of heavy metals, this study aims to estimate the load contribution of tributaries from individual watershed and human drainage and to dissect the source of heavy metals, as commonly required for environmental impact assessment. Using integrated water dynamics, Geographic Information System (GIS), and chemical analysis, we identified and evaluated the heavy metal sources of the Kosaka river system in Hokuroku basin, which is a historically mined area in Northeast Japan, both in the high-water and low-water seasons. The migration and diffusion behaviors of heavy metals along with hydro-transport were analyzed, and the effects of mining activities on regional water quality both in the high-water and low-water seasons were clarified. The results indicate that Zn pollution was obvious in the Kosaka River network, especially in the downstream area. The spatial heterogeneity of heavy metal outflows from tributary watersheds was obvious, and the variations had strong correlations with mine site locations. The heavy metal flows in the mainstream increased sharply in the vicinity downstream of the Kosaka refinery drainage outlets. Compared to the low-water season, the influences of human drainage were slighter in high-water season, with lower contribution rates due to the dilution effect of the greater water discharge. Downscale sampling is effective to identify pollutant sources in regional basins.


Author(s):  
Marcin Frankowski ◽  
Mariusz Sojka ◽  
Anetta Zioła-Frankowska ◽  
Marcin Siepak ◽  
Sadżide Murat-Błażejewska

Distribution of heavy metals in the Mała Wełna River system (western Poland)This paper reports the results of measurements of heavy metal concentrations in water, suspension, and bottom sediment samples collected at eight sites along the Mała Wełna River (western Poland). The samples were collected once a month from May to August 2006. The highest variations in the water of the Mała Wełna River were noted in the concentrations of Zn, Pb, and Cu. The results indicate that the suspension plays an important role in the transportation of pollutants contaminating the water and later in the accumulation of pollutants in the bottom sediments. The concentration of heavy metals in the bottom sediments were determined individually in grain size fractions: >2, 2-1, 1-0.5, 0.5-0.25, 0.25-0.1, 0.1-0.063, <0.063 mm. Concentrations of them were the lowest in the 0.5-0.25 and 0.25-0.1 mm fractions, and were the highest in the 0.1-0.063 and <0.063 fractions.


Author(s):  
Tiziano Iemmi ◽  
Alessandro Menozzi ◽  
Marcos Pérez-López ◽  
Giuseppina Basini ◽  
Francesca Grasselli ◽  
...  

In the present study, the Eurasian magpie (Pica pica), was evaluated as a possible bioindicator of environmental pollution by heavy metals (HMs). Levels of Ni, Pb, Cd, and Hg in feathers of 64 magpies (31 males and 33 females) were measured by ICP-MS technique. Plasmatic biomarkers of oxidative stress (OS) were also assessed. The birds were captured in the province of Parma (Italy), in different capture sites within 1 km from urban area (UZ), and farther than 5 km from urban area (RZ). Median HM levels were 0.68 mg/kg (0.18–2.27), 2.80 mg/kg (0.41–17.7), <limit of detection (LOD) mg/kg (<LOD–0.25), 3.90 mg/kg (1.35–85.9) for Ni, Pb, Cd and Hg, respectively. No significant differences in HM levels were found according to sex, while Ni and Pb were significantly higher in adult compared to young birds (p = 0.047, p = 0.004). Conversely, Cd and Hg levels in young magpies resulted higher than those of adults (p = 0.001 and p = 0.004). No correlation was found between OS biomarkers and HM levels. No differences were found in HM levels according to capture area, except for Hg level, which resulted higher in magpies of RZ (4.05 mg/kg (1.35–12.7)) compared to UZ (2.99 mg/kg (1.54–85.9)). Further experiments are needed to establish whether magpie feathers could represent a suitable non-invasive tool for biomonitoring HMs in the environment.


Author(s):  
Ngo The Cuong ◽  
Tran Hoan Quoc ◽  
Svetlana Vasilievna Zolotokopova

The article focuses on the study of change of containing heavy metals (zinc, copper, iron, cadmium, lead, arsenic) in the abiotic and biotic components of the Serepok river (Vietman) influenced by wastewater discharge from industrial areas. Heavy metal content was determined in the river water and bottom sediments in the four zones: above and within the boundaries of industrial regions Xoa Phu and Tam Thang and in two water reservoirs situated below the boundaries of those industrial areas. Tilapia Galilean ( Sarotherodon galilaeus ), Hemibagrus ( Hemibagrus ), and sazan ( Cyprinus carpio ) caught in these areas were the hydrobionts under study in which liver, gills, skeleton and muscles accumulation of heavy metals was detected. In the organs of fish caught in the river within industrial region, heavy metals concentration was 3-7 times higher. The greatest concentration of heavy metals was found in the liver and gills of fish caught in the boundaries of industrial regions, the least concentration was in the muscles. In most cases, significant correlation between heavy metal concentration in organs of fishes and in river water, bottom sediments has been revealed.


Sign in / Sign up

Export Citation Format

Share Document