scholarly journals Study of Antibiotic Resistance on Escherichia Coli in Commercial Poultry of Nepal

2017 ◽  
Vol 34 ◽  
pp. 6-17 ◽  
Author(s):  
T. Khanal ◽  
S.B. Raut ◽  
U. Paneru

The continuous use of antibiotics in compound feed at sub-therapeutic level has been an integral part of commercial poultry production in Nepal, which is one of the factors that promotes bacterial resistance. Hence, with the objective to determine antibiotic resistance in commercial poultry of Nepal, this study was designed taking Escherichia coli as a flagship bacterium. The commercial layers and broilers birds brought to veterinary teaching hospital of Agriculture and Forestry University by commercial poultry producers for disease diagnosis and treatment were considered as clinical examination of birds were carried out followed by post mortem examination (PME). Those layer/broiler birds which were not taking antibiotic orally or parenterally for last 2 weeks and diagnosed with collibacillosis on PME were included in sampling frame. Air sacculitis, fibrinous pericarditis, fibrinous perihepatitis, and coligranuloma were major criteria for presumptive diagnosis of colibacillosis on PME. The first 40 for both broiler and layer birds totaling 80 that fulfilled the criteria were selected as samples, each representing a commercial farm. All necessary information on daily management practices and previous treatments were obtained from farmer’s record book or sheets or face to face interview. Avian pathogenic E. coli was isolated from aseptically collected liver samples and confirmed by biochemical tests. Antibiogram of the isolates were investigated by means of Kirby-Bauer disc diffusion method. E. coli was isolated from all liver samples taken for the culture. It was found that E. coli were resistant most substantially towards Cephalexin (81.2%) and Amoxycillin (81.2%) followed by Tetracycline (78.8%), Colistin sulphate (n=50, 62.5%). Chloramphenicol (61.2%), Ciprofloxacin (55.0%), Enrofloxacin (53.8%), Levofloxacin (28.8%), however, no resistance was found against amikacin. The proportion of E. coli isolates that were resistance against Colistin sulphate (p<0.05), Chloramphenicol (p< 0.05), Tetracycline (p<0.001), Ciprofloxacin (p<0.01), Enrofloxacin (p<0.05) and Gentamicin (p<0.01) were significantly higher in layers compared to that of broilers. In conclusion, avian pathogenic E. coli were resistant towards several antibiotic molecules commonly used in commercial poultry of Nepal, and the resistance was higher in layers compared to broilers.

2020 ◽  
Vol 13 (6) ◽  
pp. 1037-1044
Author(s):  
Mona A. A. AbdelRahman ◽  
Heba Roshdy ◽  
Abdelhafez H. Samir ◽  
Engy A. Hamed

Aim: Antimicrobial resistance is a global health threat. This study investigated the prevalence of Escherichia coli in imported 1-day-old chicks, ducklings, and turkey poults. Materials and Methods: The liver, heart, lungs, and yolk sacs of 148 imported batches of 1-day-old flocks (chicks, 45; ducklings, 63; and turkey poults, 40) were bacteriologically examined for the presence of E. coli. Results: We isolated 38 E. coli strains from 13.5%, 6.7%, and 5.4% of imported batches of 1-day-old chicks, ducklings, and turkey poults, respectively. They were serotyped as O91, O125, O145, O78, O44, O36, O169, O124, O15, O26, and untyped in the imported chicks; O91, O119, O145, O15, O169, and untyped in the imported ducklings; and O78, O28, O29, O168, O125, O158, and O115 in the imported turkey poults. The E. coli isolates were investigated for antibiotic resistance against 16 antibiotics using the disk diffusion method and were found resistant to cefotaxime (60.5%), nalidixic acid (44.7%), tetracycline (44.7%), and trimethoprim-sulfamethoxazole (42.1%). The distribution of extended-spectrum β-lactamase (ESBL) and ampC β-lactamase genes was blaTEM (52.6%), blaSHV (28.9%), blaCTX-M (39.5%), blaOXA-1 (13.1%), and ampC (28.9%). Conclusion: Imported 1-day-old poultry flocks may be a potential source for the dissemination of antibiotic-resistant E. coli and the ESBL genes in poultry production.


2017 ◽  
Vol 6 (1) ◽  
pp. 1-4 ◽  
Author(s):  
Mukta Das Gupta ◽  
Mazharul Islam ◽  
Arup Sen ◽  
Md Samun Sarker ◽  
Ashutosh Das

The aim of this longitudinal study was to verify the prevalence and antibiotic susceptibility pattern of Escherichia coli (E. coli) in cattle reared on Bathan and intensive farming system in Bangladesh. Fecal materials originated from recto anal junction (RAJ) of 100 cattle used for primary screening on MacConkey agar. The diversities among the pink color colony producing isolates on MacConkey agar were verified by conventional cultural methods and biochemical tests. Phenotypically positive E. coli isolates were further investigated for the variations in the antimicrobial resistance profiles to 10 selected antibiotics, by the disk-diffusion method. This study revealed that the overall prevalence of E. coli was 70% of in the rectal swab sample of cattle. However, the prevalence of E. coli was found significantly higher (p= 0.002) in cattle under intensive farming (84%) than cattle on Bathan (56%). Antibiotic susceptibility pattern shows that among the tested isolates 83%, 73%, 68% and 64% were sensitive to chloramphenicol, gentamicin, ciprofloxacin and ampicillin, respectively. On the other hand, all the 70 (100%) E. coli isolates were found resistant to tetracycline and sulfamethoxazole. A high antibiotic resistance profile was also found against amoxicillin (90%), ampicillin (87%), nalidixic acid (86%) and erythromycin (83%). In total, 24 (34%) isolates were resistant against ?2 antimicrobials. The result clearly shows that antibiotic resistant E. coli isolates are commonly present in cattle of different management systems (intensive and Bathan). Therefore, careful selection of appropriate antibiotics with optimal doses might be ensured to prevent the emergence of antibiotic resistance bacteria.Microbes and Health, June 2017, 6(1): 1-4


2019 ◽  
Vol 20 (1) ◽  
pp. 125
Author(s):  
Connie Januari ◽  
Mirnawati Bachrum Sudarwanto ◽  
Trioso Purnawarman

Antibiotic use in farm is spread widely to treat of poultry disease including therapy, supportive or preventive use and as afeed additive to improve chicken performance. The negative effects of antibiotic use can increase the level of bacterial resistance to antibiotics. This study aimed to investigate on antibiotic resistance in Escherichia coli isolated from chicken meat that were sold in Traditional Market of Bogor City. A total of 175 samples of chicken meat were taken by purposive sampling method, out of 175 found 50 positive samples of E. coli. The samples were subjected to E. coli examination and the isolated E. coli were tested for the antibiotic resistance using eight antibiotics, i.e., amoxicillin, cefotaxime, colistin, nalidixid acid, streptomycin, erythromycin, oxytetracillin, and tetracycline. The study was conducted by using the disk diffusion method on Muller-Hinton agar according to the Clinical and Laboratory Standards Institute guidelines. The study showed E. coli isolated from chicken meat were resistance towards amoxicilin (90%), colistin (94%), nalidixid acid (86%), streptomycin (98%), erythromycin (98%), oxytetracillin (84%), tetracycline (86%), and cefotaxime antibiotics (12%). The proportion of multidrugresistant was 99%. The higher of multidrug-resistant indicated the E. coli would be a threat to public and environmental health. 


2021 ◽  
Vol 14 (8) ◽  
Author(s):  
Eman Jassim Mohammed ◽  
Mohammed Allami ◽  
Mohammadreza Sharifmoghaddam ◽  
Masoumeh Bahreini

Background: The O-antigen is one of the uropathogenic Escherichia coli (UPEC) virulence factors used as a biomarker to classify E. coli strains. Objectives: In this study, the relationship between antibiotic resistance patterns and O-serogroups was investigated in UPEC strains isolated from patients with urinary tract infections (UTIs) in southern Iraq. Methods: Methods: A total of 100 UPEC isolates from the urine specimens of patients with UTIs within the age range of 4 months to 78 years in various southern Iraqi hospitals were collected (May 2017 to January 2018) and confirmed using biochemical tests (e.g., Analytical Profile Index 20E). Antibiotic susceptibility tests were performed using the disk diffusion method according to the Clinical and Laboratory Standards Institute guidelines. The multiple polymerase chain reaction technique was applied to investigate the prevalence of O-serogroups. Results: Results: The most frequent serogroups in the E. coli isolates were O8 (27.7%) and O25 (24.4%); however, serogroup O83 was not observed in the samples. Serogroups O75, O6, O16, and O18 had the lowest frequency (1.1%) among the examined isolates. Furthermore, 10% of the isolates did not belong to any of the examined serogroups. The phenotypic tests showed that the highest and the lowest resistance belonged to piperacillin (92%) and imipenem (5%), respectively. Serogroups O4 and O21 showed the highest drug resistance; nevertheless, serogroups O75, O18, and O1 showed the lowest drug resistance. Additionally, 94% of the isolates were resistant to three or more classes of antibiotics. Conclusions: Conclusion: According to the results, UPEC isolates showed high resistance to common antibiotics; however, they were sensitive to imipenem and amikacin. Serogroups O8 and O25 were the most common among UPEC isolates. Moreover, O4 and O21 showed the highest drug resistance. There was a direct relationship between antimicrobial resistance and O-serogroups in UPEC isolates.


2020 ◽  
Vol 4 (3) ◽  
pp. 323-327
Author(s):  
Mamunu Abdulkadir SULAIMAN ◽  
H.S Muhammad ◽  
Aliyu Muhammad Sani ◽  
Aminu Ibrahim ◽  
Ibrahim Muhammad Hussain ◽  
...  

Multidrug resistance (MDR) exhibited by some strains of Escherichia coli may be due to acquiring mobile genetic element (R-plasmid) by the bacteria, or intrinsically induced by inappropriate use of antibiotics by the hosts.  Infection by such strains may result to prolonged illness and greater risk of death. The study evaluated the impact of curing on antibiotic resistance on selected clinical isolates of E. coli. Twenty clinical isolates of E. coli from our previous studies were re-characterized using conventional microbiological techniques. Antibiotic sensitivity testing was determined by disk diffusion method, MDR selected based on resistance to ≥ 2 classes of antibiotics. Multiple antibiotic resistance (MAR) index was determined as ratio of the number of antibiotic resisted to the total number of antibiotics tested and considered significant if ≥. 0.2. The isolates that showed significant MAR index were subjected to plasmid curing using acridine orange, thereafter, profiled for plasmid and the cured ones were re-tested against the antibiotics they initially resisted. Out of the 20 isolates, 19 (95%) were confirmed as E. coli, all (100%) of which were MDRs, which was highest against augmentin (78.9%) followed by amoxacillin (52.6%). However, after the plasmid curing only 6 (31.6%) out of the 19 isolates cured retained significant MAR index and the level of the significance had reduced drastically in 16 (84.2%) isolates. Conclusively, curing assay can completely eliminate R-plasmid acquired resistance. More studied on plasmid curing agents for possible augmentation of the agents into antibiotics may see the rise of successful antibiotic era again.


Animals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 396 ◽  
Author(s):  
Michaela Sannettha van den Honert ◽  
Pieter Andries Gouws ◽  
Louwrens Christiaan Hoffman

Studies have shown that antibiotic resistance among wild animals is becoming a public health concern, owing to increased contact and co-habitation with domestic animals that, in turn, results in increased human contact, indirectly and directly. This type of farming practice intensifies the likelihood of antibiotic resistant traits in microorganisms transferring between ecosystems which are linked via various transfer vectors, such as rivers and birds. This study aimed to determine whether the practice of wildlife supplementary feeding could have an influence on the antibiotic resistance of the bacteria harboured by the supplementary fed wildlife, and thus play a potential role in the dissemination of antibiotic resistance throughout nature. Escherichia coli and Enterococcus were isolated from the faeces of various wildlife species from seven different farms across South Africa. The Kirby-Bauer disk diffusion method was used according to the Clinical and Laboratory Standards Institute 2018 guidelines. The E. coli (F: 57%; N = 75% susceptible) and Enterococcus (F: 67%; N = 78% susceptible) isolates from the supplementary fed (F) wildlife were in general, found to be more frequently resistant to the selection of antibiotics than from those which were not supplementary fed (N), particularly towards tetracycline (E. coli F: 56%; N: 71%/Enterococcus F: 53%; N: 89% susceptible), ampicillin (F: 82%; N = 95% susceptible) and sulphafurazole (F: 68%; N = 98% susceptible). Interestingly, high resistance towards streptomycin was observed in the bacteria from both the supplementary fed (7% susceptible) and non-supplementary fed (6% susceptible) wildlife isolates. No resistance was found towards chloramphenicol and ceftazidime.


2019 ◽  
Vol 11 (01) ◽  
pp. 017-022 ◽  
Author(s):  
Rashmi M. Karigoudar ◽  
Mahesh H. Karigoudar ◽  
Sanjay M. Wavare ◽  
Smita S. Mangalgi

Abstract BACKGROUND: Escherichia coli accounts for 70%–95% of urinary tract infections (UTIs). UTI is a serious health problem with respect to antibiotic resistance and biofilms formation being the prime cause for the antibiotic resistance. Biofilm can restrict the diffusion of substances and binding of antimicrobials. In this context, the present study is aimed to perform in vitro detection of biofilm formation among E. coli strains isolated from urine and to correlate their susceptibility pattern with biofilm formation. MATERIALS AND METHODS: A total of 100 E. coli strains isolated from patients suffering from UTI were included in the study. The identification of E. coli was performed by colony morphology, Gram staining, and standard biochemical tests. The detection of biofilm was carried out by Congo Red Agar (CRA) method, tube method (TM), and tissue culture plate (TCP) method. Antimicrobial sensitivity testing was performed by Kirby–Bauer disc diffusion method on Muller–Hinton agar plate. RESULTS: Of the 100 E. coli strains, 49 (49%) and 51 (51%) were from catheterized and noncatheterized patients, respectively. Biofilm production was positive by CRA, TM, and TCP method were 49 (49%), 55 (55%), and 69 (69%), respectively. Biofilm producers showed maximum resistance to co-trimoxazole (73.9%), gentamicin (94.2%), and imipenem (11.6%) when compared to nonbiofilm producers. Significant association was seen between resistance to antibiotic and biofilm formation with a P = 0.01 (<0.05). CONCLUSION: A greater understanding of biofilm detection in E. coli will help in the development of newer and more effective treatment. The detection of biofilm formation and antibiotic susceptibility pattern helps in choosing the correct antibiotic therapy.


Antibiotics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 587
Author(s):  
Momna Rubab ◽  
Deog-Hwan Oh

Shiga toxin-producing Escherichia coli (STEC) is an enteric pathogen that causes several gastrointestinal ailments in humans across the world. STEC’s ability to cause ailment is attributed to the presence of a broad range of known and putative virulence factors (VFs) including those that encode Shiga toxins. A total of 51 E. coli strains belonging to serogroups O26, O45, O103, O104, O113, O121, O145, and O157 were tested for the presence of nine VFs via PCR and for their susceptibility to 17 frequently used antibiotics using the disc diffusion method. The isolates belonged to eight different serotypes, including eight O serogroups and 12 H types. The frequency of the presence of key VFs were stx1 (76.47%), stx2 (86.27%), eae (100%), ehxA (98.03%), nleA (100%), ureC (94.11%), iha (96.07%), subA (9.80%), and saa (94.11%) in the E. coli strains. All E. coli strains carried seven or more distinct VFs and, among these, four isolates harbored all tested VFs. In addition, all E. coli strains had a high degree of antibiotic resistance and were multidrug resistant (MDR). These results show a high incidence frequency of VFs and heterogeneity of VFs and MDR profiles of E. coli strains. Moreover, half of the E. coli isolates (74.5%) were resistant to > 9 classes of antibiotics (more than 50% of the tested antibiotics). Thus, our findings highlight the importance of appropriate epidemiological and microbiological surveillance and control measures to prevent STEC disease in humans worldwide.


2015 ◽  
Vol 9 (05) ◽  
pp. 496-504 ◽  
Author(s):  
Divya Sukumaran ◽  
Abdulla A Mohamed Hatha

Introduction: Escherichia coli strains can cause a variety of intestinal and extraintestinal diseases. Extraintestinal pathogenic E. coli (ExPEC) strains have the ability to cause severe extraintestinal infections. Multidrug resistance among ExPEC could complicate human infections. Methodology: Escherichia coli strains were isolated during the period of January 2010 to December 2012 from five different stations set at Cochin estuary. Susceptibility testing was determined by the disk-diffusion method using nine different antimicrobial agents. A total of 155 strains of Escherichia coli were screened for the presence of virulence factor genes including papAH, papC, sfa/focDE, iutA,and kpsMT II associated with ExPEC. Results: Among the 155 E. coli isolates, 26 (16.77%), carried two or more virulence genes typical of ExPEC. Furthermore, 19.23% of the ExPEC isolates with multidrug resistance were identified to belong to phylogenetic groups B2 and D. Statistically significant association of iutA gene in ExPEC was found with papC (p < 0.001) and kpsMT II (p < 0.001) genes. ExPEC isolates were mainly resistant to ampicillin (23.07%), tetracycline (19.23%), co-trimoxazole (15.38%), and cefotaxime (15.38%). The adhesion genes papAH and sfa/focDE were positively associated with resistance to gentamicin, chloramphenicol, and cefotaxime (p < 0.05). Conclusions: Co-occurrence of virulence factor genes with antibiotic resistance among ExPEC poses considerable threat to those who use this aquatic system for a living and for recreation.


Water ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 3449
Author(s):  
Cristina-Mirabela Gaşpar ◽  
Ludovic Toma Cziszter ◽  
Cristian Florin Lăzărescu ◽  
Ioan Ţibru ◽  
Marius Pentea ◽  
...  

This study aimed to compare the antibiotic resistance levels of the indicator bacteria Escherichia coli in wastewater samples collected from two hospitals and two urban communities. Antimicrobial susceptibility testing was performed on 81 E. coli isolates (47 from hospitals and 34 from communities) using the disc diffusion method according to the European Committee on Antimicrobial Susceptibility Testing (EUCAST) methodology. Ten antibiotics from nine different classes were chosen. The strains isolated from the community wastewater, compared to those from the hospital wastewater, were not resistant to gentamicin (p = 0.03), but they showed a significantly higher susceptibility—increased exposure to ceftazidime (p = 0.001). Multidrug resistance was observed in 85.11% of the hospital wastewater isolates and 73.53% of the community isolates (p > 0.05). The frequency of the presumed carbapenemase-producing E. coli was higher among the community isolates (76.47% compared to 68.09%) (p > 0.05), whereas the frequency of the presumed extended-spectrum beta-lactamase (ESBL)-producing E. coli was higher among the hospital isolates (21.28% compared to 5.88%) (p > 0.05). The antibiotic resistance rates were high in both the hospital and community wastewaters, with very few significant differences between them, so the community outlet might be a source of resistant bacteria that is at least as important as the well-recognised hospitals.


Sign in / Sign up

Export Citation Format

Share Document