scholarly journals The Effect of Pomegranate Juice Extract on the Viability and Morphology of Human Colorectal Cancer Cell, HCT-116

Author(s):  
Elsa Haniffah Mejia Mohamed ◽  
Fatin Nursyamimi Abd Razak ◽  
Kim Jun Cheng ◽  
Zaridatul Aini Ibrahim

Introduction: Colorectal cancer (CRC) is the second most common cancer in Malaysia. Current available treatments used have limitations due to the occurrence of drug resistance and unfavourable side effects.Objectives: This study aims to investigate the potential cytotoxicity of pomegranate juice extract (PJE) on colorectal cancer cell line, HCT-116 colorectal cancer and CCD-841 normal colorectal cells.Methods: Half maximal inhibitory concentration of the extract (IC50) was determined and selected for further investigations. Cell viability was assessed using MTT assay and morphological changes were observed using AO/PI staining.Results: PJE induced modest cytotoxic effect against HCT-116 cancer cells. High concentrations and longer stimulation periods were needed to demonstrate the cytotoxic effect of the PJE (IC50 of 987.76 ± 210.15 μg/mL at 72-hours). AO/PI staining demonstrated that the PJE (1000 μg/mL) induced obvious morphological changes in HCT-116 cancer cells after 72 hours of treatment. Characteristics of apoptosis were observed in the cancer cells. MTT assay results showed no significant reduction in normal cell viability in every time point of treatment.Conclusion: PJE induced specific cytotoxic effect and morphological changes in HCT-116 cancer cells as compared to CCD-841 normal cells. Further studies should be conducted to determine the detailed mechanisms by which PJE induced apoptosis in HCT-116 colorectal cancer cells to uncover its potential application as an adjunct therapy against colorectal cancer.International Journal of Human and Health Sciences Supplementary Issue: 2019 Page: 57

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Elcin Ozgur ◽  
Handan Kayhan ◽  
Gorkem Kismali ◽  
Fatih Senturk ◽  
Merve Sensoz ◽  
...  

Abstract Objectives The aim of this study is to investigate the effects of radiofrequency radiation (RFR) on apoptosis, proliferation, stress response, and inflammation markers in colorectal cancer cells. Methods We tested the effects of intermittent exposure to RFR at different frequencies on two different colorectal cancer cell lines; HCT-116 and DLD-1. Protein levels were subsequently analyzed by ELISA. Results RFR led to a decrease in P53, p-P53, p-P38, and p-IkB levels in HCT-116 cells, while leading to an increase in BAD, p-BAD, p-STAT3,NF-κB levels. Two thousand one hundred Megahertz of RFR altered the P53, BAD, and NF-ΚB expression in HCT-116 cells. P53, p-P53, BAD, p-BAD, NF-κB, p-NF-κB, p-P38, p-SAPK/JNK, p-STAT3, and p-IkB levels increased after exposure to RFR at 900 and 2,100 MHz in DLD-1 cells. Unlike HCT-116 cells, 1,800 MHz of RFR was reported to have no effect on DLD1 cells. Conclusions RFR increased apoptosis and inflammatory response in HCT116 cells, while lowering the active P38 and active P53 levels, which are indicators of poor prognosis in several cancers. Genetic differences, such as P53 mutation (DLD-1), are critical to the cell response to RFR, which explains the reason why scientific studies on the effects of RFR yield contradictory results.


2020 ◽  
Vol 10 (12) ◽  
pp. 1766-1772
Author(s):  
Jindong Li ◽  
Xi Wang ◽  
Xin Huang ◽  
Na Li ◽  
Ya Ling ◽  
...  

Colorectal cancer is a common malignant cancer that is characterized by high mortality rate. CCAT1 is a type of newly discovered lncRNA. This research was conducted to study the role of CCAT1 in colorectal cancer. The findings showed that there was significant up-regulation of CCAT1 expression in colorectal cancer. Then, online bioinformatic database and dual-luciferase reporter assay to prove CCAT1 and miR-152 have direct binding sites. Many researches demonstrated that miR-152 played a crucial role in development of colorectal cancer. Therefore, we then explored the relationship between CCAT1 and miR-152 in colorectal cancer. qRT-PCR analysis showed that miR-152 was lowly expressed in cancer tissue and cells. We then explored the effect of CCAT1 and miR-152 on the biological effects of colorectal cancer cells. MiR-152 up-regulation significantly reduced colorectal cancer cell viability and enhanced apoptosis. Furthermore, CCAT1-shRNA inhibited colorectal cancer cell viability and enhanced cell apoptosis were significantly eliminated by miR-152 inhibitor. Combined with all results, CCAT1/miR-152 axis was related to colorectal cancer progression regulation, which might be used as new therapeutic targets for colorectal cancer treatment.


Cancers ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1482 ◽  
Author(s):  
Leung ◽  
Chou ◽  
Huang ◽  
Yang

Aberrant overexpression of high mobility group AT-hook 2 (HMGA2) is frequently found in cancers and HMGA2 has been considered an anticancer therapeutic target. In this study, a pan-cancer genomics survey based on Cancer Cell Line Encyclopedia (CCLE) and The Cancer Genome Atlas (TCGA) data indicated that HMGA2 was mainly overexpressed in gastrointestinal cancers including colorectal cancer. Intriguingly, HMGA2 overexpression had no prognostic impacts on cancer patients’ overall and disease-free survivals. In addition, HMGA2-overexpressing colorectal cancer cell lines did not display higher susceptibility to a previously identified HMGA2 inhibitor (netroposin). By microarray profiling of HMGA2-driven gene signature and subsequent Connectivity Map (CMap) database mining, we identified that S100 calcium-binding protein A4 (S100A4) may be a druggable vulnerability for HMGA2-overexpressing colorectal cancer. A repurposing S100A4 inhibitor, niclosamide, was found to reverse the HMGA2-driven gene signature both in colorectal cancer cell lines and patients’ tissues. In vitro and in vivo experiments validated that HMGA2-overexpressing colorectal cancer cells were more sensitive to niclosamide. However, inhibition of S100A4 by siRNAs and other inhibitors was not sufficient to exert effects like niclosamide. Further RNA sequencing analysis identified that niclosamide inhibited more cell-cycle-related gene expression in HMGA2-overexpressing colorectal cancer cells, which may explain its selective anticancer effect. Together, our study repurposes an anthelminthic drug niclosamide for treating HMGA2-overexpression colorectal cancer.


2019 ◽  
Vol 9 (17) ◽  
pp. 3510 ◽  
Author(s):  
Mohammad Wajih Alam ◽  
Khan A. Wahid ◽  
Md. Fahmid Islam ◽  
Wendy Bernhard ◽  
Clarence R. Geyer ◽  
...  

Fluorescence imaging is a well-known method for monitoring fluorescence emitted from the subject of interest and provides important insights about cell dynamics and molecules in mammalian cells. Currently, many solutions exist for measuring fluorescence, but the application methods are complex and the costs are high. This paper describes the design and development of a low-cost, smart and portable fluorimeter for the detection of colorectal cancer cell expressing IRFP702. A flashlight is used as a light source, which emits light in the visible range and acts as an excitation source, while a photodiode is used as a detector. It also uses a longpass filter to only allow the wavelength of interest to pass from the cultured cell. It eliminates the need of both the dichroic mirror and excitation filter, which makes the developed device low cost, compact and portable as well as lightweight. The custom-built sample chamber is black in color to minimize interference and is printed with a 3D printer to accommodate the detector circuitry. An established colorectal cancer cell line (human colorectal carcinoma (HCT116)) was cultured in the laboratory environment. A near-infrared fluorescent protein IRFP702 was expressed in the colorectal cancer cells that were used to test the proof-of-concept. The fluorescent cancer cells were first tested with a commercial imaging system (Odyssey® CLx) and then with the developed prototype to validate the result in a preclinical setting. The developed fluorimeter is versatile as it can also be used to detect multiple types of cancer cells by simply replacing the filters based on the fluorophore.


2021 ◽  
Author(s):  
Veeranna Yempally ◽  
Queenie Fernandez ◽  
Lobna Safwan Al_Zaidan ◽  
Varghese Inchakalody ◽  
Maysaloun Merhi ◽  
...  

2021 ◽  
Author(s):  
Jiachi Ma ◽  
Wanqing Liang ◽  
Yaosheng Qiang ◽  
Lei Li ◽  
Jun Du ◽  
...  

Abstract Background: The aim of this study was to investigate the co-operative role of CXCR4/ CXCL12 axis and IL-1Ra in metastatic processes mechanism by interactions between colorectal cancer cells and stromal cells in their microenvironment. Methods: Expression of IL-1a, CXCL12 and CXCR4 mRNA and proteins were determined by RT-PCR and Western blot. The effect of secreted level of CXCL12 by IL-1Ra on fibroblasts was measured by ELISA. CXCL12 regulate metastatic potential of colorectal cancer was evaluated by proliferation, invasion and angiogenesis assays, respectively, in which invasion and angiogenesis assays used an in vitro system consisting of co-cultured colorectal cells and stromal cells. Results: IL-1a was expressed in high liver metastatic colorectal cancer cell lines (HT-29 and WiDr). The colorectal cancer cell-derived IL-1a and rIL-1a significantly promoted CXCL12 expression by fibroblasts, and this enhancing effect can be significantly inhibited by IL-1Ra (P<0.01). CXCL12 not only enhanced the migration and proliferation of human umbilical vein endothelial cells (HUVECs), but also significantly enhanced angiogenesis (P<0.01). Furthermore, the high liver-metastatic colorectal cancer cell line (HT-29), which secretes IL-1a, significantly enhanced angiogenesis compared to the low liver-metastatic cell line (CaCo-2), which does not produce IL-1a (P<0.01). On the contrary, IL-1Ra can significantly inhibit migration, proliferation and angiogenesis (P<0.01). Conclusion: Autocrine IL-1a and paracrine CXCL12 co-enhances the metastatic potential of colorectal cancer cells; IL-1Ra can inhibit the metastatic potential of colorectal cancer cells via decrease IL-1a/CXCR4/CXCL12 signaling pathways.


Sign in / Sign up

Export Citation Format

Share Document