scholarly journals Macroscopic visual displacement of a polymer solution for enhanced oil recovery: Hele-Shaw cell experiments and computational simulation

2020 ◽  
Vol 66 (3 May-Jun) ◽  
pp. 273
Author(s):  
S. De Santiago ◽  
O. Olivares-Xometl ◽  
N. V. Likhanova ◽  
I. V. Lijanova ◽  
P. Arellanes-Lozada

Numerous laboratory studies and field application tests have shown that polymer flooding is an effective method to improve the oil recovery by displacing residual oil after water flooding. In this work, a series of visual model displacement experiments was conducted in Hele-Shaw cells to determine the effectiveness of polymer flooding in homogeneous and fractured media with a fracture parallel or perpendicular to the flow direction. The matrix with parallel fracture to the flow direction presented a delay in the oil production process during water and polymer flooding with respect to the homogeneous medium and the one with perpendicular fracture, where the highest recovery numbers during waterflooding and polymer flooding were achieved for the medium with perpendicular fracture to the flow direction, reaching 56 % of cumulative oil recovery. The displacement results and multiphasic simulation show that the homogeneous medium is an attractive candidate for additional recovery application with polymer flooding after water flooding when the oil production reached almost zero, although the production rate is lower than the one obtained for a porous medium with a fracture perpendicular to the flow direction.

Polymers ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 446 ◽  
Author(s):  
Lei Zhang ◽  
Nasir Khan ◽  
Chunsheng Pu

Due to the strong heterogeneity between the fracture and the matrix in fractured oil reservoirs, injected water is mainly moved forward along the fracture, which results in poor water flooding. Therefore, it is necessary to reduce the water cut and increase oil production by using the conformance control technology. So far, gel particles and partially hydrolyzed polyacrylamide (HPAM)/Cr3+ gel are the most common applications due to their better suitability and low price. However, either of the two alone can only reduce the conductivity of the fracture to a certain extent, which leads to a poor effect. Therefore, to efficiently plug the fracture to enhance oil recovery, a combination of gel particles and the HPAM/Cr3+ system is used by laboratory tests according to their respective advantages. The first step is that the gel particles can compactly and uniformly cover the entire fracture and then the fracture channel is transformed into the gel particles media. This process can enhance the oil recovery to 18.5%. The second step is that a suitable HPAM/Cr3+ system based on the permeability of the gel particles media is injected in the fractured core. Thus, the fracture can be completely plugged and the oil in the matrix of the fractured core can be displaced by water flooding. This process can enhance oil recovery to 10.5%. During the whole process, the oil recovery is increased to 29% by this method. The results show that this principle can provide a new method for the sustainable and efficient development of fractured oil reservoirs.


2017 ◽  
Vol 10 (1) ◽  
pp. 94-107 ◽  
Author(s):  
Kaoping Song ◽  
Ning Sun ◽  
Yanfu Pi

Background: Polymer flooding is the most commonly applied chemical enhanced-oil-recovery technique in offshore oilfields. However, there are challenges and risks in applying the technology of polymer flooding to offshore heavy oil development. Objective: This paper compared the spread law and the displacement effect of different injection modes and validated the feasibility of enhancing oil recovery by variable concentrations polymer flooding. Method: Two types of laboratory experiments were designed by using micro etching glass models and heterogeneous artificial cores. Furthermore, in order to determine a better polymer flooding mode, the displacement results, displacement characteristic curves and oil saturation distribution of heterogeneous artificial cores were also compared, respectively. Results: The experimental results showed that the recovery of variable concentrations polymer flooding was higher than that of constant concentration polymer flooding, under conditions of same total amount of polymer and similar water flooding recovery. Its sweep efficiency and displacement efficiency were also significantly higher than those of constant concentration polymer flooding. Moreover, variable concentrations polymer flooding had lower peak pressure and was at lower risk for reaching the formation fracture pressure. Conclusion: As a consequence, variable concentrations polymer flooding has certain feasibility for heterogeneous reservoir in offshore oilfields, and can improve interlayer heterogeneity to further tapping remaining oil in medium and low permeability layer. Conclusions of this paper can provide reference for the field application of polymer flooding in offshore oilfields.


2020 ◽  
Vol 10 (8) ◽  
pp. 3971-3981
Author(s):  
Sanyah Ramkissoon ◽  
David Alexander ◽  
Rean Maharaj ◽  
Mohammad Soroush

Abstract Trinidad and Tobago (TT) has a rich history of crude oil production and is still one of the largest oil- and gas-producing countries in the Caribbean region. The energy sector contributes approximately 35% of GDP to its economy; however, economic headwinds due to steadily decreasing oil production, low commodity prices and increased competition worldwide have highlighted the need for more economical methods of enhanced oil recovery (EOR) techniques. Although the use of low salinity polymer flooding for EOR has had success in other countries, critical information relating associated flooding system parameters such as soil type, additive type, adsorption characteristics, rheological (flow) characteristics, pH and salinity is not available and is critical if this type of EOR is to be implemented in TT. The nature and inter-relationship of these parameters are unique to a particular reservoir, and studies in this regard will provide key input data for simulations to produce near realistic projections of this EOR strategy. These projections can be used to evaluate the usefulness of a low salinity polymer flooding in TT and guide for the proper implementation of the strategy. The EOR 33 wells located in the lower Forest sands in Southern Trinidad was selected for study as they satisfied the screening criteria. Laboratory studies of the adsorption of xanthan gum concentrations of 0 to 4000 ppm in combination with NaCl solutions (0–40,000 ppm) onto gravel packed sand found that the mixture of 1000 ppm polymer containing 1000 ppm NaCl exhibited the lowest adsorption capacity. The Langmuir coefficients were derived for each salinity, and together with results from the viscosity studies were inputted within the simulation models. Simulations of a sector of the EOR 33 projected that the highest oil recovery occurred using NaCl < 2000 ppm was 11% greater than water flood. A combination of brine (NaCl < 2000 ppm) with gel technology (1000 ppm polymer) produced the highest oil recovery factor (54%), almost twice that of water flooding, the highest average reservoir pressure and lowest water cut value. The improved performance characteristics observed using low salinity water flood with xanthan gum gel for injection can be associated with improved displacement efficiency and improved the sweep efficiency suggesting the strategy to be a technically feasible option for the EOR well in Trinidad.


2013 ◽  
Vol 275-277 ◽  
pp. 496-501
Author(s):  
Fu Qing Yuan ◽  
Zhen Quan Li

According to the geological parameters of Shengli Oilfield, sweep efficiency of chemical flooding was analyzed according to injection volume, injection-production parameters of polymer flooding or surfactant-polymer compound flooding. The orthogonal design method was employed to select the important factors influencing on expanding sweep efficiency by chemical flooding. Numerical simulation method was utilized to analyze oil recovery and sweep efficiency of different flooding methods, such as water flooding, polymer flooding and surfactant-polymer compound flooding. Finally, two easy calculation models were established to calculate the expanding degree of sweep efficiency by polymer flooding or SP compound flooding than water flooding. The models were presented as the relationships between geological parameters, such as effective thickness, oil viscosity, porosity and permeability, and fluid parameters, such as polymer-solution viscosity and oil-water interfacial tension. The precision of the two models was high enough to predict sweep efficiency of polymer flooding or SP compound flooding.


2011 ◽  
Vol 12 (1) ◽  
pp. 31-38 ◽  
Author(s):  
Muhammad Taufiq Fathaddin ◽  
Asri Nugrahanti ◽  
Putri Nurizatulshira Buang ◽  
Khaled Abdalla Elraies

In this paper, simulation study was conducted to investigate the effect of spatial heterogeneity of multiple porosity fields on oil recovery, residual oil and microemulsion saturation. The generated porosity fields were applied into UTCHEM for simulating surfactant-polymer flooding in heterogeneous two-layered porous media. From the analysis, surfactant-polymer flooding was more sensitive than water flooding to the spatial distribution of multiple porosity fields. Residual oil saturation in upper and lower layers after water and polymer flooding was about the same with the reservoir heterogeneity. On the other hand, residual oil saturation in the two layers after surfactant-polymer flooding became more unequal as surfactant concentration increased. Surfactant-polymer flooding had higher oil recovery than water and polymer flooding within the range studied. The variation of oil recovery due to the reservoir heterogeneity was under 9.2%.


2020 ◽  
Vol 10 (17) ◽  
pp. 6087
Author(s):  
Mariam Shakeel ◽  
Peyman Pourafshary ◽  
Muhammad Rehan Hashmet

The fast depletion of oil reserves has steered the petroleum industry towards developing novel and cost-effective enhanced oil recovery (EOR) techniques in order to get the most out of reservoirs. Engineered water–polymer flooding (EWPF) is an emerging hybrid EOR technology that uses the synergetic effects of engineered water (EW) and polymers to enhance both the microscopic and macroscopic sweep efficiencies, which mainly results from: (1) the low-salinity effect and the presence of active ions in EW, which help in detachment of carboxylic oil material from the rock surface, wettability alteration, and reduction in the residual oil saturation; (2) the favorable mobility ratio resulting from the use of a polymer; and (3) the improved thermal and salinity resistance of polymers in EW. Various underlying mechanisms have been proposed in the literature for EW EOR effects in carbonates, but the main driving factors still need to be understood properly. Both polymer flooding (PF) and EW have associated merits and demerits. However, the demerits of each can be overcome by combining the two methods, known as hybrid EWPF. This hybrid technique has been experimentally investigated for both sandstone and carbonate reservoirs by various researchers. Most of the studies have shown the synergistic benefits of the hybrid method in terms of two- to four-fold decreases in the polymer adsorption, leading to 30–50% reductions in polymer consumption, making the project economically viable for carbonates. EWPF has resulted in 20–30% extra oil recovery in various carbonate coreflood experiments compared to high-salinity water flooding. This review presents insights into the use of hybrid EWPF for carbonates, the main recovery driving factors in the hybrid process, the advantages and limitations of this method, and some areas requiring further work.


Author(s):  
Fengqi Tan ◽  
Changfu Xu ◽  
Yuliang Zhang ◽  
Gang Luo ◽  
Yukun Chen ◽  
...  

The special sedimentary environments of conglomerate reservoir lead to pore structure characteristics of complex modal, and the reservoir seepage system is mainly in the “sparse reticular-non reticular” flow pattern. As a result, the study on microscopic seepage mechanism of water flooding and polymer flooding and their differences becomes the complex part and key to enhance oil recovery. In this paper, the actual core samples from conglomerate reservoir in Karamay oilfield are selected as research objects to explore microscopic seepage mechanisms of water flooding and polymer flooding for hydrophilic rock as well as lipophilic rock by applying the Computed Tomography (CT) scanning technology. After that, the final oil recovery models of conglomerate reservoir are established in two displacement methods based on the influence analysis of oil displacement efficiency. Experimental results show that the seepage mechanisms of water flooding and polymer flooding for hydrophilic rock are all mainly “crawling” displacement along the rock surface while the weak lipophilic rocks are all mainly “inrushing” displacement along pore central. Due to the different seepage mechanisms among the water flooding and the polymer flooding, the residual oil remains in hydrophilic rock after water flooding process is mainly distributed in fine throats and pore interchange. These residual oil are cut into small droplets under the influence of polymer solution with stronger shearing drag effect. Then, those small droplets pass well through narrow throats and move forward along with the polymer solution flow, which makes enhancing oil recovery to be possible. The residual oil in weak lipophilic rock after water flooding mainly distributed on the rock particle surface and formed oil film and fine pore-throat. The polymer solution with stronger shear stress makes these oil films to carry away from particle surface in two ways such as bridge connection and forming oil silk. Because of the essential attributes differences between polymer solution and injection water solution, the impact of Complex Modal Pore Structure (CMPS) on the polymer solution displacement and seepage is much smaller than on water flooding solution. Therefore, for the two types of conglomerate rocks with different wettability, the pore structure is the main controlling factor of water flooding efficiency, while reservoir properties oil saturation, and other factors have smaller influence on flooding efficiency although the polymer flooding efficiency has a good correlation with remaining oil saturation after water flooding. Based on the analysis on oil displacement efficiency factors, the parameters of water flooding index and remaining oil saturation after water flooding are used to establish respectively calculation models of oil recovery in water flooding stage and polymer flooding stage for conglomerate reservoir. These models are able to calculate the oil recovery values of this area controlled by single well control, and further to determine the oil recovery of whole reservoir in different displacement stages by leveraging interpolation simulation methods, thereby providing more accurate geological parameters for the fine design of displacement oil program.


2012 ◽  
Vol 524-527 ◽  
pp. 1807-1810
Author(s):  
Hao Chen ◽  
Sheng Lai Yang ◽  
Fang Fang Li ◽  
San Bo Lv ◽  
Zhi Lin Wang

CO2 flooding process has been a proven valuable tertiary enhanced oil recovery (EOR) technique. In this paper, experiment on extractive capacity of CO2 in oil saturated porous media was conducted under reservoir conditions. The main objectives of the study are to evaluate extractive capacity of CO2 in oil saturated natural cores and improve understanding of the CO2 flooding mechanisms, especially in porous media conditions. Experimental results indicated that oil production decreases while GOR increases with extractive time increases. the changes of the color and state of the production oil shows that oil component changes from light to heavy as extractive time increases. In addition, no oil was produced by water flooding after extractive experiment. Based on the experimental results and phenomena, the main conclusion drawn from this study is that under supercritical condition, CO2 has very powerful extractive capacity. And the application of CO2 flooding is recommended for enhancing oil recovery.


Energies ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 5288
Author(s):  
Xianguo Zhang ◽  
Chengyan Lin ◽  
Yuqi Wu ◽  
Tao Zhang ◽  
Hongwei Wang ◽  
...  

During water and polymer flooding for enhanced oil recovery, pore structures may vary because of the fluid–rock interactions, which can lead to variations in petrophysical properties and affect oil field production. To investigate the effects of fluid flooding on pore structures, six samples were subjected to brine water, dual-system, and alkaline–surfactant–polymer (ASP) polymer displacement experiments. Before and after experiments, samples were scanned by X-ray CT. Thin sections, X-ray diffraction, and high pressure mercury injection tests were also carried out to characterize mineralogy and fractal dimension of pore systems before experiments. Experiment results show that water flooding with low injection pore volume ratio (IPVR) can improve reservoir quality since total porosity and connected porosity of samples rise after the flooding and the proportion of large pores also increases and heterogeneity of pore structure decreases. However, water flooding with high IPVR has reverse effects on pore structures. Polymer flooding reduces the total porosity, connected porosity, the percentage of small pores and enhances the heterogeneity of pore structures. It can be found that pore structures will change in fluid flooding and appropriate water injection can improve reservoir quality while excessive water injection may destroy the reservoir. Meanwhile, injected polymer may block throats and destroy reservoirs. The experimental results can be used as the basis for oil field development.


Sign in / Sign up

Export Citation Format

Share Document