Scanning Capacitance Microscopy for Failure Analysis of SOI-Based Advanced Microprocessors

Author(s):  
Lim Soon Huat ◽  
Lwin Hnin-Ei ◽  
Vinod Narang ◽  
J.M. Chin

Abstract Scanning capacitance microscopy (SCM) has been used in electrical failure analysis (EFA) to isolate failing silicon transistors on silicon-on-insulator (SOI) substrates. With the shrinking device geometry and increasing layout complexity, the defects in transistors are often non-visual and require detailed electrical analysis to pinpoint the defect signature. This paper demonstrates the use of SCM technique for EFA on SOI device substrates, as well as using this technique to isolate defective contacts in a relatively large-area scan of 25µm x 25µm. We also performed dC/dV electrical characterization of defective transistors, and correlated the data from SCM technique and electrical data from nano-probing to locate failing transistors.

Author(s):  
Stefano Larentis ◽  
Kent Erington ◽  
Jose Z. Garcia ◽  
Khiem Ly ◽  
Kris Dickson ◽  
...  

Abstract As advanced silicon-on-insulator (SOI) technology becomes a more widespread technology offering, failure analysis approaches should be adapted to new device structures. We review two nanoprobing case studies of advanced SOI technology, detailing the electrical characterization of a compound gate-to-drain defect as well as the characterization of unexpected SOI source-to-well leakage.


Author(s):  
P. Schwindenhammer ◽  
H. Murray ◽  
P. Descamps ◽  
P. Poirier

Abstract Decapsulation of complex semiconductor packages for failure analysis is enhanced by laser ablation. If lasers are potentially dangerous for Integrated Circuits (IC) surface they also generate a thermal elevation of the package during the ablation process. During measurement of this temperature it was observed another and unexpected electrical phenomenon in the IC induced by laser. It is demonstrated that this new phenomenon is not thermally induced and occurs under certain ablation conditions.


Author(s):  
Randal Mulder ◽  
Sam Subramanian ◽  
Tony Chrastecky

Abstract The use of atomic force probe (AFP) analysis in the analysis of semiconductor devices is expanding from its initial purpose of solely characterizing CMOS transistors at the contact level with a parametric analyzer. Other uses found for the AFP include the full electrical characterization of failing SRAM bit cells, current contrast imaging of SOI transistors, measuring surface roughness, the probing of metallization layers to measure leakages, and use with other tools, such as light emission, to quickly localize and identify defects in logic circuits. This paper presents several case studies in regards to these activities and their results. These case studies demonstrate the versatility of the AFP. The needs and demands of the failure analysis environment have quickly expanded its use. These expanded capabilities make the AFP more valuable for the failure analysis community.


Author(s):  
Yuk L. Tsang ◽  
Alex VanVianen ◽  
Xiang D. Wang ◽  
N. David Theodore

Abstract In this paper, we report a device model that has successfully described the characteristics of an anomalous CMOS NFET and led to the identification of a non-visual defect. The model was based on detailed electrical characterization of a transistor exhibiting a threshold voltage (Vt) of about 120mv lower than normal and also exhibiting source to drain leakage. Using a simple graphical simulation, we predicted that the anomalous device was a transistor in parallel with a resistor. It was proposed that the resistor was due to a counter doping defect. This was confirmed using Scanning Capacitance Microscopy (SCM). The dopant defect was shown by TEM imaging to be caused by a crystalline silicon dislocation.


Author(s):  
Hui Pan ◽  
Thomas Gibson

Abstract In recent years, there have been many advances in the equipment and techniques used to isolate faults. There are many options available to the failure analyst. The available techniques fall into the categories of electrical, photonic, thermal and electron/ion beam [1]. Each technique has its advantages and its limitations. In this paper, we introduce a case of successful failure analysis using a combination of several fault localization techniques on a 0.15um CMOS device with seven layers of metal. It includes electrical failure mode characterization, front side photoemission, backside photoemission, Focused Ion Beam (FIB), Scanning Electron Microscope (SEM) and liquid crystal. Electrical characterization along with backside photoemission proved most useful in this case as a poly short problem was found to be causing a charge pump failure. A specific type of layout, often referred to as a hammerhead layout, and the use of Optical Proximity Correction (OPC) contributed to the poly level shorts.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Masanobu Iwanaga ◽  
Bongseok Choi ◽  
Hideki T. Miyazaki ◽  
Yoshimasa Sugimoto ◽  
Kazuaki Sakoda

We show an effective procedure for lateral structure tuning in nanoimprint lithography (NIL) that has been developed as a vertical top-down method fabricating large-area nanopatterns. The procedure was applied to optical resonance tuning in stacked complementary (SC) metasurfaces based on silicon-on-insulator (SOI) substrates and was found to realize structure tuning at nm precision using only one mold in the NIL process. The structure tuning enabled us to obtain fine tuning of the optical resonances, offering cost-effective, high-throughput, and high-precision nanofabrication. We also demonstrate that the tuned optical resonances selectively and significantly enhance fluorescence (FL) of dye molecules in a near-infrared range. FL intensity on a SC metasurface was found to be more than 450-fold larger than the FL intensity on flat Au film on base SOI substrate.


2008 ◽  
Vol E91-C (5) ◽  
pp. 747-750
Author(s):  
D. U. LEE ◽  
S. P. KIM ◽  
T. H. LEE ◽  
E. K. KIM ◽  
H.-M. KOO ◽  
...  

Author(s):  
Christelle Giret ◽  
Damien Faure

Abstract The Soft Bit failure (Single Bit Failure sensitive to voltage) of a 90nm SRAM cell presented a difficult challenge for the Failure Analysis (FA) group. Physical analysis of these Soft SRAM failures did not show any visual defects; therefore the FA required an accurate electrical characterization. The transistor characteristics of the failing SRAM transistors are needed in order to speculate on the possible failure mechanism. The Nano-Probing technique performed at Nice Device Failure Analysis of Laboratory (NDAL) allowed us to identify anomalies of I/V characteristics like Vt imbalance, low Gain, asymmetrical Vt, ID (Drive current) and Ron. Case studies of an asymmetry phenomenon reported here lead to a correlation between the failure mode and the electrical measurements. This paper demonstrates a suitable electrical methodology and characterization by Nano-Probing in order to successfully manage a FA approach on this type of failure.


Sign in / Sign up

Export Citation Format

Share Document