Using NI-PXI Test Platform in Soft Defect Localization of Temperature Dependent Failures

Author(s):  
Jed Paolo Deligente ◽  
Saidaliah Sarip

Abstract Soft Defect Localization (SDL) method has been a common failure analysis technique used in fault isolation of temperature dependent failures, however proper signal conditioning and conversion of the monitored signal into a pass/fail signal are critical in acquiring an accurate defect location. This paper presents case studies where LabVIEW software using NI-PXI test platform was successfully implemented to effectively convert the failure mode into a pass/fail signal which provided a reliable SDL result.

Author(s):  
Hui Peng Ng ◽  
Angela Teo ◽  
Ghim Boon Ang ◽  
Alfred Quah ◽  
N. Dayanand ◽  
...  

Abstract This paper discussed on how the importance of failure analysis to identify the root cause and mechanism that resulted in the MEMS failure. The defect seen was either directly on the MEMS caps or the CMOS integrated chip in wafer fabrication. Two case studies were highlighted in the discussion to demonstrate how the FA procedures that the analysts had adopted in order to narrow down to the defect site successfully on MEMS cap as well as on CMOS chip on MEMS package units. Besides the use of electrical fault isolation tool/technique such as TIVA for defect localization, a new physical deprocessing approach based on the cutting method was performed on the MEMS package unit in order to separate the MEMS from the Si Cap. This approach would definitely help to prevent the introduction of particles and artifacts during the PFA that could mislead the FA analyst into wrong data interpretation. Other FA tool such as SEM inspection to observe the physical defect and Auger analysis to identify the elements in the defect during the course of analysis were also documented in this paper.


2021 ◽  
Author(s):  
Allan Norico ◽  
Rommel Estores

Abstract Temperature dependent failures are some of the most challenging cases that will be encountered by the analyst. Soft Defect Localization (SDL) is a technique used to analyze such temperature-dependent, ‘soft defect’ failures [1]. There are many literatures that discuss this technique and its different applications [2-7]. Dynamic Analysis by Laser Stimulation (DALS) is one of the known SDL implementations [8-11]. However, there are cases where the failure is occurring at a temperature where the laser alone is not sufficient to effectively induce a change of device behavior. In these situations, the analyst needs to think out of the box by understanding how the device will react to external conditions and to make necessary adjustments in DALS settings. This paper will discuss three cases that presents different challenges such as performing DALS analysis where the failing temperature is too high for the laser to induce a change of behavior from ambient temperature, cold temperature failure, complex triggering (Serial Peripheral Interface, SPI), and using an internal signal as input for DALS analysis. The approach used for a successful DALS analysis of each case will be discussed in detail.


Author(s):  
Sarven Ipek ◽  
David Grosjean

Abstract The application of an individual failure analysis technique rarely provides the failure mechanism. More typically, the results of numerous techniques need to be combined and considered to locate and verify the correct failure mechanism. This paper describes a particular case in which different microscopy techniques (photon emission, laser signal injection, and current imaging) gave clues to the problem, which then needed to be combined with manual probing and a thorough understanding of the circuit to locate the defect. By combining probing of that circuit block with the mapping and emission results, the authors were able to understand the photon emission spots and the laser signal injection microscopy (LSIM) signatures to be effects of the defect. It also helped them narrow down the search for the defect so that LSIM on a small part of the circuit could lead to the actual defect.


Author(s):  
Kristopher D. Staller ◽  
Corey Goodrich

Abstract Soft Defect Localization (SDL) is a dynamic laser-based failure analysis technique that can detect circuit upsets (or cause a malfunctioning circuit to recover) by generation of localized heat or photons from a rastered laser beam. SDL is the third and seldom used method on the LSM tool. Most failure analysis LSM sessions use the endo-thermic mode (TIVA, XIVA, OBIRCH), followed by the photo-injection mode (LIVA) to isolate most of their failures. SDL is seldom used or attempted, unless there is a unique and obvious failure mode that can benefit from the application. Many failure analysts, with a creative approach to the analysis, can employ SDL. They will benefit by rapidly finding the location of the failure mechanism and forgoing weeks of nodal probing and isolation. This paper will cover circuit signal conditioning to allow for fast dynamic failure isolation using an LSM for laser stimulation. Discussions of several cases will demonstrate how the laser can be employed for triggering across a pass/fail boundary as defined by voltage levels, supply currents, signal frequency, or digital flags. A technique for manual input of the LSM trigger is also discussed.


Author(s):  
Hui Peng Ng ◽  
Ghim Boon Ang ◽  
Chang Qing Chen ◽  
Alfred Quah ◽  
Angela Teo ◽  
...  

Abstract With the evolution of advanced process technology, failure analysis is becoming much more challenging and difficult particularly with an increase in more erratic defect types arising from non-visual failure mechanisms. Conventional FA techniques work well in failure analysis on defectively related issue. However, for soft defect localization such as S/D leakage or short due to design related, it may not be simple to identify it. AFP and its applications have been successfully engaged to overcome such shortcoming, In this paper, two case studies on systematic issues due to soft failures were discussed to illustrate the AFP critical role in current failure analysis field on these areas. In other words, these two case studies will demonstrate how Atomic Force Probing combined with Scanning Capacitance Microscopy were used to characterize failing transistors in non-volatile memory, identify possible failure mechanisms and enable device/ process engineers to make adjustment on process based on the electrical characterization result. [1]


Author(s):  
Lihong Cao ◽  
Manasa Venkata ◽  
Jeffery Huynh ◽  
Joseph Tan ◽  
Meng-Yeow Tay ◽  
...  

Abstract This paper describes the application of lock-in thermography (LIT) for flip-chip package-level failure analysis. LIT successfully detected and localized short failures related to both die/C4 bumps and package defects inside the organic substrate. The detail sample preparation to create short defects at different layers, LIT fault isolation methodology, and case studies performed with LIT are also presented in this paper.


Author(s):  
Randal Mulder ◽  
Sam Subramanian ◽  
Ed Widener ◽  
Tony Chrastecky

Abstract Single bit failures are the dominant failure mode for SRAM 6T bit cell memory devices. The analysis of failing single bits is aided by the fact that the mechanism is localized to the failing 6T bit cell. After electrically analyzing numerous failing bits, it was observed that failing bit cells were consistently producing specific electrical signatures (current-voltage curves). To help identify subtle bit cell failure mechanisms, this paper discusses an MCSpice program which was needed to simulate a 6T SRAM bit cell and the electrical analysis. It presents four case studies that show how MCSpice modeling of defective 6T SRAM bit cells was successfully used to identify subtle defect types (opens or shorts) and locations within the failing cell. The use of an MCSpice simulation and the appropriate physical analysis of defective bit cells resulted in a >90% success rate for finding failure mechanisms on yield and process certification programs.


Author(s):  
C.C. Ooi ◽  
K.H. Siek ◽  
K.S. Sim

Abstract Focused ion beam system has been widely used as a critical failure analysis tool as microprocessor technology advances at a ramping speed. It has become an essential step in failure analysis to reveal physical defects post electrical fault isolation. In this highly competitive and challenging environment prevalent today, failure analysis throughput time is of utmost important. Therefore quick, efficient and reliable physical failure analysis technique is needed to avoid potential issues from becoming bigger. This paper will discuss the applications of FIB as a defect localization and root cause determination tool through the passive charge contrast technique and pattern FIB analysis.


Author(s):  
S.H. Goh ◽  
B.L. Yeoh ◽  
G.F. You ◽  
W.H. Hung ◽  
Jeffrey Lam ◽  
...  

Abstract Backside frequency mapping on modulating active in transistors is well established for defect localization on broken scan chains. Recent experiments have proven the existence of frequency signals from passive structures modulations. In this paper, we demonstrate the effectiveness of this technique on a 65 nm technology node device failure. A resistive leaky path leading to a functional failure which, otherwise cannot be isolated using dynamic emission microscopy, is localized in this work to guide follow on failure analysis.


Sign in / Sign up

Export Citation Format

Share Document