Lock-in Thermography for Flip-Chip Package Failure Analysis

Author(s):  
Lihong Cao ◽  
Manasa Venkata ◽  
Jeffery Huynh ◽  
Joseph Tan ◽  
Meng-Yeow Tay ◽  
...  

Abstract This paper describes the application of lock-in thermography (LIT) for flip-chip package-level failure analysis. LIT successfully detected and localized short failures related to both die/C4 bumps and package defects inside the organic substrate. The detail sample preparation to create short defects at different layers, LIT fault isolation methodology, and case studies performed with LIT are also presented in this paper.

Author(s):  
Andrew J. Komrowski ◽  
N. S. Somcio ◽  
Daniel J. D. Sullivan ◽  
Charles R. Silvis ◽  
Luis Curiel ◽  
...  

Abstract The use of flip chip technology inside component packaging, so called flip chip in package (FCIP), is an increasingly common package type in the semiconductor industry because of high pin-counts, performance and reliability. Sample preparation methods and flows which enable physical failure analysis (PFA) of FCIP are thus in demand to characterize defects in die with these package types. As interconnect metallization schemes become more dense and complex, access to the backside silicon of a functional device also becomes important for fault isolation test purposes. To address these requirements, a detailed PFA flow is described which chronicles the sample preparation methods necessary to isolate a physical defect in the die of an organic-substrate FCIP.


Author(s):  
Gwee Hoon Yen ◽  
Ng Kiong Kay

Abstract Today, failure analysis involving flip chip [1] with copper pillar bump packaging technologies would be the major challenges faced by analysts. Most often, handling on the chips after destructive chemical decapsulation is extremely critical as there are several failure analysis steps to be continued such as chip level fault localization, chip micro probing for fault isolation, parallel lapping [2, 3, 4] and passive voltage contrast. Therefore, quality of sample preparation is critical. This paper discussed and demonstrated a quick, reliable and cost effective methodology to decapsulate the thin small leadless (TSLP) flip chip package with copper pillar (CuP) bump interconnect technology.


Author(s):  
Sukho Lee ◽  
Marc van Veenhuizen ◽  
Paolo Navaretti ◽  
Gaia Donati

Abstract Lock-in techniques enable the detection of very small signals in a background that can be dominated by noise. This strength makes these techniques valuable especially for failure analysis of active devices where the deviation may be difficult to detect. This paper describes novel use case applications in which the lock-in amplifier plays a key role. The case studies covered are multi-frequency mapping fault isolation with nonperiodic patterns and frequency resonance measurement of a micro electro-mechanical system (MEMS) gyroscope. The paper presents how lock-in amplifiers enable digital failure analysis using compressed scan patterns. It reports on using a lock-in to characterize a MEMS gyroscope and on how to directly observe the gyroscope motion using phase laser voltage imaging/electro-optical frequency mapping. It can be concluded that the lock-in techniques form an essential part of the failure analysis toolkit and will only be more so with this study.


Author(s):  
Lihong Cao ◽  
Loc Tran ◽  
Wallace Donna

Abstract This article describes how Focused Ion Beam (FIB) milling methodology enhances the capability of package-level failure analysis on flip-chip packages by eliminating the artifacts induced by using conventional mechanical techniques. Dual- Beam Focused Ion Beam (DB FIB) cross sections were successful in detecting failure mechanisms related either to the die/C4 bump or package defect inside the organic substrate. This paper outlines detailed sample preparation techniques prior to performing the DB FIB cross-sections, along with case studies of DB FIB cross-sections.


Author(s):  
Sebastian Brand ◽  
Matthias Petzold ◽  
Peter Czurratis ◽  
Peter Hoffrogge

Abstract In industrial manufacturing of microelectronic components, non-destructive failure analysis methods are required for either quality control or for providing a rapid fault isolation and defect localization prior to detailed investigations requiring target preparation. Scanning acoustic microscopy (SAM) is a powerful tool enabling the inspection of internal structures in optically opaque materials non-destructively. In addition, depth specific information can be employed for two- and three-dimensional internal imaging without the need of time consuming tomographic scan procedures. The resolution achievable by acoustic microscopy is depending on parameters of both the test equipment and the sample under investigation. However, if applying acoustic microscopy for pure intensity imaging most of its potential remains unused. The aim of the current work was the development of a comprehensive analysis toolbox for extending the application of SAM by employing its full potential. Thus, typical case examples representing different fields of application were considered ranging from high density interconnect flip-chip devices over wafer-bonded components to solder tape connectors of a photovoltaic (PV) solar panel. The progress achieved during this work can be split into three categories: Signal Analysis and Parametric Imaging (SA-PI), Signal Analysis and Defect Evaluation (SA-DE) and Image Processing and Resolution Enhancement (IP-RE). Data acquisition was performed using a commercially available scanning acoustic microscope equipped with several ultrasonic transducers covering the frequency range from 15 MHz to 175 MHz. The acoustic data recorded were subjected to sophisticated algorithms operating in time-, frequency- and spatial domain for performing signal- and image analysis. In all three of the presented applications acoustic microscopy combined with signal- and image processing algorithms proved to be a powerful tool for non-destructive inspection.


Author(s):  
Jason H. Lagar ◽  
Rudolf A. Sia

Abstract Most Wafer Level Chip Scale Package (WLCSP) units returned by customers for failure analysis are mounted on PCB modules with an epoxy underfill coating. The biggest challenge in failure analysis is the sample preparation to remove the WLCSP device from the PCB without inducing any mechanical defect. This includes the removal of the underfill material to enable further electrical verification and fault isolation analysis. This paper discusses the evaluations conducted in establishing the WLCSP demounting process and removal of the epoxy underfill coating. Combinations of different sample preparation techniques and physical failure analysis steps were evaluated. The established process enabled the electrical verification, fault isolation and further destructive analysis of WLCSP customer returns mounted on PCB and with an epoxy underfill coating material. This paper will also showcase some actual full failure analysis of WLCSP customer returns where the established process played a vital role in finding the failure mechanism.


Author(s):  
Yongkai Zhou ◽  
Jie Zhu ◽  
Han Wei Teo ◽  
ACT Quah ◽  
Lei Zhu ◽  
...  

Abstract In this paper, two failure analysis case studies are presented to demonstrate the importance of sample preparation procedures to successful failure analyses. Case study 1 establishes that Palladium (Pd) cannot be used as pre-FIB coating for SiO2 thickness measurement due to the spontaneously Pd silicide formation at the SiO2/Si interface. Platinum (Pt) is thus recommended, in spite of the Pt/SiO2 interface roughness, as the pre-FIB coating in this application. In the second case study, the dual-directional TEM inspection method is applied to characterize the profile of the “invisible” tungsten residue defect. The tungsten residue appears invisible in the planeview specimen due to the low mass-thickness contrast. It is then revealed in the cross-sectional TEM inspection.


Author(s):  
Swaminathan Subramanian ◽  
Khiem Ly ◽  
Tony Chrastecky

Abstract Visualization of dopant related anomalies in integrated circuits is extremely challenging. Cleaving of the die may not be possible in practical failure analysis situations that require extensive electrical fault isolation, where the failing die can be submitted of scanning probe microscopy analysis in various states such as partially depackaged die, backside thinned die, and so on. In advanced technologies, the circuit orientation in the wafer may not align with preferred crystallographic direction for cleaving the silicon or other substrates. In order to overcome these issues, a focused ion beam lift-out based approach for site-specific cross-section sample preparation is developed in this work. A directional mechanical polishing procedure to produce smooth damage-free surface for junction profiling is also implemented. Two failure analysis applications of the sample preparation method to visualize junction anomalies using scanning microwave microscopy are also discussed.


2021 ◽  
Author(s):  
Kuang-Tse Ho ◽  
Cheng-Che Li

Abstract This research summarizes failure analysis results about ionimplantation related issues in Si-based power devices, including diode, MOSFET and IGBT. To find out this kind of defects, sample preparation, fault isolation and SCM inspection are critical steps, which will be explained in detail in this paper.


Author(s):  
Gil Garteiz ◽  
Javeck Verdugo ◽  
David Aveline ◽  
Eric Williams ◽  
Arvid Croonquist ◽  
...  

Abstract In this paper, a failure analysis case study on a custom-built vacuum enclosure is presented. The enclosure’s unique construction and project requirement to preserve the maximum number of units for potential future use in space necessitated a fluorocarbon liquid bath for fault isolation and meticulous sample preparation to preserve the failure mechanism during failure analysis.


Sign in / Sign up

Export Citation Format

Share Document