Automated Via Detection for PCB Reverse Engineering

Author(s):  
Ulbert J. Botero ◽  
David Koblah ◽  
Daniel E. Capecci ◽  
Fatemeh Ganji ◽  
Navid Asadizanjani ◽  
...  

Abstract Reverse engineering (RE) is the only foolproof method of establishing trust and assurance in hardware. This is especially important in today's climate, where new threats are arising daily. A Printed Circuit Board (PCB) serves at the heart of virtually all electronic systems and, for that reason, a precious target amongst attackers. Therefore, it is increasingly necessary to validate and verify these hardware boards both accurately and efficiently. When discussing PCBs, the current state-of-the-art is non-destructive RE through X-ray Computed Tomography (CT); however, it remains a predominantly manual process. Our work in this paper aims at paving the way for future developments in the automation of PCB RE by presenting automatic detection of vias, a key component to every PCB design. We provide a via detection framework that utilizes the Hough circle transform for the initial detection, and is followed by an iterative false removal process developed specifically for detecting vias. We discuss the challenges of detecting vias, our proposed solution, and lastly, evaluate our methodology not only from an accuracy perspective but the insights gained through iteratively removing false-positive circles as well. We also compare our proposed methodology to an off-the-shelf implementation with minimal adjustments of Mask R-CNN; a fast object detection algorithm that, although is not optimized for our application, is a reasonable deep learning model to measure our work against. The Mask R-CNN we utilize is a network pretrained on MS COCO followed by fine tuning/training on prepared PCB via images. Finally, we evaluate our results on two datasets, one PCB designed in house and another commercial PCB, and achieve peak results of 0.886, 0.936, 0.973, for intersection over union (IoU), Dice Coefficient, and Structural Similarity Index. These results vastly outperform our tuned implementation of Mask R-CNN.

2014 ◽  
Vol 5 (1) ◽  
pp. 737-741
Author(s):  
Alejandro Dueñas Jiménez ◽  
Francisco Jiménez Hernández

Because of the high volume of processing, transmission, and information storage, electronic systems presently requires faster clock speeds tosynchronizethe integrated circuits. Presently the “speeds” on the connections of a printed circuit board (PCB) are in the order of the GHz. At these frequencies the behavior of the interconnects are more like that of a transmission line, and hence distortion, delay, and phase shift- effects caused by phenomena like cross talk, ringing and over shot are present and may be undesirable for the performance of a circuit or system.Some of these phrases were extracted from the chapter eight of book “2-D Electromagnetic Simulation of Passive Microstrip Circuits” from the corresponding author of this paper.


2015 ◽  
Vol 752-753 ◽  
pp. 1406-1412
Author(s):  
Lei Zeng ◽  
Jian Chen ◽  
Han Ning Li ◽  
Bin Yan ◽  
Yi Fu Xu ◽  
...  

In modern industry, the nondestructive testing of printed circuit board (PCB) can prevent effectively the system failure and is becoming more and more important. As a vital part of the PCB, the via connects the devices, the components and the wires and plays a very important role for the connection of the circuits. With the development of testing technology, the nondestructive testing of the via extends from two dimension to three dimension in recent years. This paper proposes a three dimensional detection algorithm using morphology method to test the via. The proposed algorithm takes full advantage of the three dimensional structure and shape information of the via. We have used the proposed method to detect via from PCB images with different size and quality, and found the detection performances to be very encouraging.


Electronics ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 539
Author(s):  
Ryan P. Tortorich ◽  
William Morell ◽  
Elizabeth Reiner ◽  
William Bouillon ◽  
Jin-Woo Choi

Because modern electronic systems are likely to be exposed to high intensity radiated fields (HIRF) environments, there is growing interest in understanding how electronic systems are affected by such environments. Backdoor coupling in particular is an area of concern for all electronics, but there is limited understanding about the mechanisms behind backdoor coupling. In this work, we present a study on printed circuit board (PCB) backdoor coupling and the effects of via fencing. Existing work focuses on ideal stackups and indicates that edge radiation is significantly reduced by via fencing. In this study, both full wave electromagnetic modeling and experimental verification are used to investigate both ideal and practical PCB stackups. In the ideal scenario, we find that via fencing substantially reduces coupling, which is consistent with prior work on emissions. In the practical scenario, we incorporate component footprints and traces which naturally introduce openings in the top ground plane. Both simulation and experimental data indicate that via fencing in the practical scenario does not substantially mitigate coupling, suggesting that PCB edge coupling is not the dominant coupling mechanism, even at varying angles of incidence and polarization.


Micromachines ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 123
Author(s):  
Junzhe Shen ◽  
Tian Qiang ◽  
Minjia Gao ◽  
Yangchuan Ma ◽  
Junge Liang ◽  
...  

In this paper, a bandpass filter (BPF) was developed utilizing GaAs-based integrated passive device technology which comprises an asymmetrical spiral inductor and an interleaved array capacitor, possessing two tuning modes: coarse-tuning and fine-tuning. By altering the number of layers and radius of the GaAs substrate metal spheres, capacitance variation from 0.071 to 0.106 pF for coarse-tuning, and of 0.0015 pF for fine-tuning, can be achieved. Five air bridges were employed in the asymmetrical spiral inductor to save space, contributing to a compact chip area of 0.015λ0 × 0.018λ0. The BPF chip was installed on the printed circuit board artwork with Au bonding wire and attached to a die sink. Measured results demonstrate an insertion loss of 0.38 dB and a return loss of 21.5 dB at the center frequency of 2.147 GHz. Furthermore, under coarse-tuning mode, variation in the center frequency from 1.956 to 2.147 GHz and transmission zero frequency from 4.721 to 5.225 GHz can be achieved. Under fine-tuning mode, the minimum tuning value and the average tuning value of the proposed BPF can be accurate to 1.0 MHz and 4.7 MHz for the center frequency and 1.0 MHz and 12.8 MHz for the transmission zero frequency, respectively.


Proceedings ◽  
2018 ◽  
Vol 2 (13) ◽  
pp. 913 ◽  
Author(s):  
Suresh Alasatri ◽  
Libor Rufer ◽  
Joshua En-Yuan Lee

We present aluminum nitride (AlN) on silicon (Si) CMOS-compatible piezoelectric micromachined ultrasonic transducers (pMUTs) with an extended detection range of up to 140 cm for touchless sensing applications. The reported performance surpasses the current state-of-art for AlN-based pMUTs in terms of the maximum range of detection using just a pair of pMUTs (as opposed to an array of pMUTs). The extended range of detection has been realized by using a larger diaphragm allowed by fabricating a thicker diaphragm than most other pMUTs reported to date. Using a pair of pMUTs, we experimentally demonstrate the capability of range-finding by correlating the time-of-flight (TOF) between the transmit (TX) and receive (RX) pulse. The results were obtained using an experimental setup where the MEMS chip was interconnected with a customized printed circuit board (PCB) using Al wire bonds.


2020 ◽  
Vol 10 (19) ◽  
pp. 6662
Author(s):  
Ji-Won Baek ◽  
Kyungyong Chung

Since the image related to road damage includes objects such as potholes, cracks, shadows, and lanes, there is a problem that it is difficult to detect a specific object. In this paper, we propose a pothole classification model using edge detection in road image. The proposed method converts RGB (red green and blue) image data, including potholes and other objects, to gray-scale to reduce the amount of computation. It detects all objects except potholes using an object detection algorithm. The detected object is removed, and a pixel value of 255 is assigned to process it as a background. In addition, to extract the characteristics of a pothole, the contour of the pothole is extracted through edge detection. Finally, potholes are detected and classified based by the (you only look once) YOLO algorithm. The performance evaluation evaluates the distortion rate and restoration rate of the image, and the validity of the model and accuracy of the classification. The result of the evaluation shows that the mean square error (MSE) of the distortion rate and restoration rate of the proposed method has errors of 0.2–0.44. The peak signal to noise ratio (PSNR) is evaluated as 50 db or higher. The structural similarity index map (SSIM) is evaluated as 0.71–0.82. In addition, the result of the pothole classification shows that the area under curve (AUC) is evaluated as 0.9.


Author(s):  
Ercan M. Dede ◽  
Feng Zhou ◽  
Paul Schmalenberg ◽  
Tsuyoshi Nomura

Rapid advancement of modern electronics has pushed the limits of traditional thermal management techniques. Novel approaches to the manipulation of the flow of heat in electronic systems have potential to open new design spaces. Here, the field of thermal metamaterials as it applies to electronics is briefly reviewed. Recent research and development of thermal meta-material systems with anisotropic thermal conductivity for the manipulation of heat flow in ultra-thin composites is explained. An explanation of fundamental experimental studies on heat flow control using standard printed circuit board technology follows. From this, basic building blocks for heat flux cloaking, focusing, and reversal are reviewed, and their extension to a variety of electronics applications is emphasized. While device temperature control, thermal energy harvesting, and electro-thermal circuit design are the primary focus, some discussion on the extension of thermal-guiding structures to device-scale applications is provided. In total, a holistic view is offered of the myriad of possible applications of thermal metamaterials to heat flow control in future electronics.


Author(s):  
Przemyslaw K. Matkowski ◽  
Tomasz Falat ◽  
Andrzej Moscicki

This study investigates the effect of silver paste composition on reliability of sintered silver interconnections. The interconnections are formed between SMD 1206 chip jumpers and electroless nickel immersion gold (ENIG) coating of FR4 printed circuit board (PCB) solder pads. They are made of pastes that vary in their composition (various proportions of micro and nano particles). The sintering process was conducted in convective oven. After the process the interconnections were subjected to X-Ray inspection in order to characterize the structure of interconnections (presence of voids, total surface of interconnection etc.). During accelerated reliability tests the PCBs were subjected to combined temperature cycling and vibration loading. During the tests daisy chains of interconnections were connected to dedicated programmable multichannel event detector developed in LIPEC lab. The event detector is able to detect and store information about object condition based on the real-time resistance measurements and applied novel algorithm of event detection. Failure modes were confirmed by using X-Ray computed tomography. The paper presents results of comparative Weibull analysis.


Sign in / Sign up

Export Citation Format

Share Document