Unlocking Novel FA Case Studies Using a Lock-in Amplifier

Author(s):  
Sukho Lee ◽  
Marc van Veenhuizen ◽  
Paolo Navaretti ◽  
Gaia Donati

Abstract Lock-in techniques enable the detection of very small signals in a background that can be dominated by noise. This strength makes these techniques valuable especially for failure analysis of active devices where the deviation may be difficult to detect. This paper describes novel use case applications in which the lock-in amplifier plays a key role. The case studies covered are multi-frequency mapping fault isolation with nonperiodic patterns and frequency resonance measurement of a micro electro-mechanical system (MEMS) gyroscope. The paper presents how lock-in amplifiers enable digital failure analysis using compressed scan patterns. It reports on using a lock-in to characterize a MEMS gyroscope and on how to directly observe the gyroscope motion using phase laser voltage imaging/electro-optical frequency mapping. It can be concluded that the lock-in techniques form an essential part of the failure analysis toolkit and will only be more so with this study.

Author(s):  
Lihong Cao ◽  
Manasa Venkata ◽  
Jeffery Huynh ◽  
Joseph Tan ◽  
Meng-Yeow Tay ◽  
...  

Abstract This paper describes the application of lock-in thermography (LIT) for flip-chip package-level failure analysis. LIT successfully detected and localized short failures related to both die/C4 bumps and package defects inside the organic substrate. The detail sample preparation to create short defects at different layers, LIT fault isolation methodology, and case studies performed with LIT are also presented in this paper.


Author(s):  
G. Ranganathan ◽  
V.K. Ravikumar ◽  
S.L. Phoa ◽  
C. Nemirow ◽  
N. Leslie

Abstract Laser Voltage imaging (LVI) is an established and widely used technique for isolating scan chain failures, especially those that are stuck-at a particular state. Enhancements such as second harmonic mapping have been beneficial in detecting a fault that is not stuck, but caused a shift in duty-cycle of the injected signal. In this paper, we describe Phase LVI which is constructed by integrating a lock-in amplifier as an enhancement to LVI for studying the relative phases between scan flops. Additionally we showcase case studies of successful fault isolation using phase LVI, where traditional LVI techniques were not successful.


Author(s):  
Bence Hevesi

Abstract In this paper, different failure analysis (FA) workflows are showed which combines different FA approaches for fast and efficient fault isolation and root cause analysis in system level products. Two case studies will be presented to show the importance of a well-adjusted failure analysis workflow.


Author(s):  
Vikash Kumar ◽  
Devraj Karthikeyan

Abstract Fault localization is a common failure analysis process that is used to detect the anomaly on a faulty device. The Infrared Lock-In Thermography (LIT) is one of the localization techniques which can be used on the packaged chips for identifying the heat source which is a result of active damage. This paper extends the idea that the LIT analysis for fault localization is not only limited to the devices within the silicon die but it also highlights thermal failure indications of other components on the PCB (like capacitors, FETs etc on a system level DC-DC μmodule). The case studies presented demonstrate the effectiveness of using LIT in the Failure analysis process of a system level DC-DC μmodule regulator


Author(s):  
Jessica Yang ◽  
Omprakash Rengaraj ◽  
Puneet Gupta ◽  
Rudolf Schlangen

Abstract Static Random-Access Memory (SRAM) failure analysis (FA) is important during chip-level reliability evaluation and yield improvement. Single-bit, paired-bit, and quad-bit failures—whose defect should be at the failing bit-cell locations—can be directly sent for Physical Failure Analysis (PFA). For one or multiple row/column failures with too large of a suspected circuit area, more detailed fault isolation is required before PFA. Currently, Photon Emission Microscopy (PEM) is the most commonly used Electrical Failure Analysis (EFA) technique for this kind of fail [1]. Soft-Defect Localization / Dynamic Laser Stimulation (SDL/DLS) can also be applied on soft (Vmin) row/column fails for further isolation [2]. However, some failures do not have abnormal emission spots or DLS sensitivity and require different localization techniques. Laser Voltage Imaging (LVI) and Laser Voltage Probing (LVP) are widely established for logic EFA, [3] but require periodic activation via ATE which may not be possible using MBIST hardware and test-patterns optimized for fast production testing. This paper discusses the test setup challenges to enable LVI & LVP on SRAM fails and includes two case studies on <14 nm advanced process silicon.


Author(s):  
Thierry Parrassin ◽  
Guillaume Celi ◽  
Sylvain Dudit ◽  
Michel Vallet ◽  
Antoine Reverdy ◽  
...  

Abstract The Laser Voltage Imaging (LVI) technique, introduced in 2007 [1][2], has been demonstrated as a successful defect localization technique to address problems on advanced technologies. In this paper, several 28nm case studies are described on which the LVI technique and its derivatives provide a real added value to the defect localization part of the Failure Analysis flow. We will show that LVI images can be used as a great reference to improve the CAD alignment overlay accuracy which is critical for advanced technology debug. Then, we will introduce several case studies on 28nm technology on which Thermal Frequency Imaging (TFI) and Second Harmonic Detection (two LVI derivative techniques) allow efficient defect localization.


Author(s):  
Hui Peng Ng ◽  
Angela Teo ◽  
Ghim Boon Ang ◽  
Alfred Quah ◽  
N. Dayanand ◽  
...  

Abstract This paper discussed on how the importance of failure analysis to identify the root cause and mechanism that resulted in the MEMS failure. The defect seen was either directly on the MEMS caps or the CMOS integrated chip in wafer fabrication. Two case studies were highlighted in the discussion to demonstrate how the FA procedures that the analysts had adopted in order to narrow down to the defect site successfully on MEMS cap as well as on CMOS chip on MEMS package units. Besides the use of electrical fault isolation tool/technique such as TIVA for defect localization, a new physical deprocessing approach based on the cutting method was performed on the MEMS package unit in order to separate the MEMS from the Si Cap. This approach would definitely help to prevent the introduction of particles and artifacts during the PFA that could mislead the FA analyst into wrong data interpretation. Other FA tool such as SEM inspection to observe the physical defect and Auger analysis to identify the elements in the defect during the course of analysis were also documented in this paper.


2021 ◽  
Author(s):  
Kuang-Tse Ho ◽  
Cheng-Che Li

Abstract This research summarizes a variety of physical failure modes of GaAs-based oxide-confined VCSELs and their root causes. Standard failure analysis procedure, which includes defect fault isolation by PEM or IR-OBIRCH and physical inspection by TEM analysis are also presented in detail.


Author(s):  
Guillaume Celi ◽  
Sylvain Dudit ◽  
Thierry Parrassin ◽  
Michel Vallet ◽  
Philippe Perdu ◽  
...  

Abstract The Laser Voltage Imaging (LVI) technique [1], introduced in 2009, appears as a very promising approach for Failure Analysis application which allows mapping frequencies through the backside of integrated circuits. In this paper, we propose a new range of application based on the study of the LVI second harmonic for signal degradation analysis. After a theoretical study of the impact of signal degradation on the second harmonic, we will demonstrate the interest of this new approach on two case studies on ultimate technology (28nm). This technique is a new approach of failure analysis that maps timing degradation and duty cycle degradation. In order to confirm the degradations we will use the LVP Technique. The last part is two real case studies on which this LVI second harmonic technique was used to find the root cause of a 28nm process issue.


Author(s):  
Paul Hubert P. Llamera ◽  
Camille Joyce G. Garcia-Awitan

Abstract Lock-in thermography (LIT), known as a powerful nondestructive fault localization technique, can also be used for microscopic failure analysis of integrated circuits (ICs). The dynamic characteristic of LIT in terms of measurement, imaging and sensitivity, is a distinct advantage compared to other thermal fault localization methods as well as other fault isolation techniques like emission microscopy. In this study, LIT is utilized for failure localization of units exhibiting functional failure. Results showed that LIT was able to point defects with emissions in the mid-wave infra-red (MWIR) range that Photo Emission Microscopy (PEM) with near infrared (NIR) to short- wave infra-red (SWIR) detection wavelength sensitivity cannot to detect.


Sign in / Sign up

Export Citation Format

Share Document