Characterization of WC-Co Coatings Using HP/HVOF Process

Author(s):  
S.Y. Hwang ◽  
B.G. Seong ◽  
M.C. Kim

Abstract To maintain surface roughness of process rolls in cold rolling steel plants, WC-Co coatings have been known to be effective ones. In this study, a high pressure/high velocity oxygen fuel (HP/HVOF) process was used to obtain WC-Co coatings. To get the best quality of coatings, WC-Co coatings are sprayed with numerous powders made by various processes. These powders include agglomerated sintered powders, fused-crushed powders, extra high carbon WC-Co powders and (W2C, WC)-Co powders. After spraying, properties of coatings such as hardness, wear resistance. X-ray diffraction, and microstructures were analyzed. For coatings produced by agglomerated-sintered powders, hardness of the coating increased as power levels and the number of passes were increased. In case of the coatings produced by fused-crushed powders, a very low deposition rate was obtained due to a low flowablity of the powders. In addition, the WC-Co coatings sprayed with extra carbon content of WC-Co did not show improved hardness and wear resistance. Also, some decomposition of WC was observed in the coating. Finally, the coatings produced by (W2C, WC)-Co powders produced higher hardness and lower wear resistance coating.

1997 ◽  
Vol 07 (03n04) ◽  
pp. 265-275
Author(s):  
R. Q. Zhang ◽  
S. Yamamoto ◽  
Z. N. Dai ◽  
K. Narumi ◽  
A. Miyashita ◽  
...  

Natural FeTiO 3 (illuminate) and synthesized FeTiO 3, single crystals were characterized by Rutherford backscattering spectroscopy combined with channeling technique and particle-induced x-ray emission (RBS-C and PIXE). The results obtained by the ion beam analysis were supplemented by the x-ray diffraction analysis to identify the crystallographic phase. Oriented single crystals of synthesized FeTiO 3 were grown under the pressure control of CO 2 and H 2 mixture gas using a single-crystal floating zone technique. The crystal quality of synthesized FeTiO 3 single crystals could be improved by the thermal treatment but the exact pressure control is needed to avoid the precipitation of Fe 2 O 3 even during the annealing procedure. Natural FeTiO 3 contains several kinds of impurities such as Mn , Mg , Na and Si . The synthesized samples contain Al , Si and Na which are around 100 ppm level as impurities. The PBS-C results of the natural sample imply that Mn impurities occupy the Fe sublattice in FeTiO 3 or in mixed phase between ilmenite and hematite.


Author(s):  
Michael R. Jackson ◽  
Thomas L. Selby

A recombinant metal-dependent phosphatidylinositol-specific phospholipase C (PI-PLC) fromStreptomyces antibioticushas been crystallized by the hanging-drop method with and without heavy metals. The native crystals belonged to the orthorhombic space groupP222, with unit-cell parametersa= 41.26,b= 51.86,c = 154.78 Å. The X-ray diffraction results showed significant differences in the crystal quality of samples soaked with heavy atoms. Additionally, drop pinning, which increases the surface area of the drops, was also used to improve crystal growth and quality. The combination of heavy-metal soaks and drop pinning was found to be critical for producing high-quality crystals that diffracted to 1.23 Å resolution.


1999 ◽  
Vol 4 (S1) ◽  
pp. 429-434 ◽  
Author(s):  
C. H. Wei ◽  
Z. Y. Xie ◽  
J. H. Edgar ◽  
K. C. Zeng ◽  
J. Y. Lin ◽  
...  

Boron was incorporated into GaN in order to determine its limits of solubility, its ability of reducing the lattice constant mismatch with 6H-SiC, as well as its effects on the structural and optical properties of GaN epilayers. BxGa1−xN films were deposited on 6H-SiC (0001) substrates at 950 °C by low pressure MOVPE using diborane, trimethylgallium, and ammonia as precursors. A single phase alloy with x=0.015 was successfully produced at a gas reactant B/Ga ratio of 0.005. Phase separation into pure GaN and BxGa1−xN alloy with x=0.30 was deposited for a B/Ga reactant ratio of 0.01. This is the highest B fraction of the wurtzite structure alloy ever reported. For B/Ga ratio ≥ 0.02, no BxGa1−xN was formed, and the solid solution contained two phases: wurtzite GaN and BN based on the results of Auger and x-ray diffraction. The band edge emission of BxGa1−xN varied from 3.451 eV for x=0 with FWHM of 39.2 meV to 3.465 eV for x=0.015 with FWHM of 35.1 meV. The narrower FWHM indicated that the quality of GaN epilayer was improved with small amount of boron incorporation.


1998 ◽  
Vol 537 ◽  
Author(s):  
C. H. Wei ◽  
Z. Y. Xie ◽  
J. H. Edgar ◽  
K. C. Zeng ◽  
J. Y. Lin ◽  
...  

AbstractBoron was incorporated into GaN in order to determine its limits of solubility, its ability of reducing the lattice constant mismatch with 6H-SiC, as well as its effects on the structural and optical properties of GaN epilayers. BxGal-xN films were deposited on 6H-SiC (0001) substrates at 950 °C by low pressure MOVPE using diborane, trimethylgallium, and ammonia as precursors. A single phase alloy with x=0.015 was successfully produced at a gas reactant B/Ga ratio of 0.005. Phase separation into pure GaN and BxGal-xN alloy with x=0.30 was deposited for a B/Ga reactant ratio of 0.01. This is the highest B fraction of the wurtzite structure alloy ever reported. For B/Ga ratio ≥ 0.02, no BxGal-xN was formed, and the solid solution contained two phases: wurtzite GaN and BN based on the results of Auger and x-ray diffraction. The band edge emission of BxGal-xN varied from 3.451 eV for x=0 with FWHM of 39.2 meV to 3.465 eV for x=0.015 with FWHM of 35.1 meV. The narrower FWHM indicated that the quality of GaN epilayer was improved with small amount of boron incorporation.


2012 ◽  
Vol 465 ◽  
pp. 186-191
Author(s):  
Shou Long Gong ◽  
Fang Lin Du

Star-like CuO with submicrometer sizes was fabricated via a simple liquid-phase deposition with the assistant of PVP and Na2MoO4. The as-prepared CuO have been characterized by X-ray diffraction(XRD) and scanning electron microscopy (SEM). The results showed that the as-prepared CuO owned monoclinic structure, the concentrations of PVP, Na2MoO4 and NaOH are very important to the morphology of CuO. The quality of PVP impacts the formation of thin flakes on the skeletons. Meanwhile, the growth of dendritic skeletons was depended on the addition of Na2MoO4, and the effect of NaOH is to control the dimension of CuO structure.


2015 ◽  
Vol 1120-1121 ◽  
pp. 174-178
Author(s):  
Li Zhu Zhao ◽  
G. Chen

LiMnO2 are synthesized by hydrothermal technique by using Mn(CH3COO)2.4H2O and MnO2 with the same mole ratio which are dissolved in aqueous solution with different concentration LiOH. Structural characterization based on X-ray diffraction and Raman spectroscopy reveals that LiMnO2 is in a well-order orthorhombic structure with lower stacking faults compared to the LiMnO2 prepared by other techniques. Experimental results show that the concentration of lithium hydroxide in aqueous solution affect the quality of LiMnO2.


1998 ◽  
Vol 541 ◽  
Author(s):  
M. Linnik ◽  
O. Wilson ◽  
A. Christou

AbstractThe preparation and characterization of thick PLZT films for spatial phase modulator applications are reported. Films were fabricated on LSCO/LAO substrates by a sol-gel technique using multiple heat-treatment parameters. The crystal quality of PLZT 9/65/35 films was investigated by X-ray diffraction and scanning electron microscopy.


2006 ◽  
Vol 46 ◽  
pp. 146-151
Author(s):  
Andriy Lotnyk ◽  
Stephan Senz ◽  
Dietrich Hesse

Single phase TiO2 thin films of anatase structure have been prepared by reactive electron beam evaporation. Epitaxial (012)- and (001)-oriented anatase films were successfully obtained on (110)- and (100)-oriented SrTiO3 substrates, respectively. X-ray diffraction and cross section transmission electron microscopy investigations revealed a good epitaxial quality of the anatase films grown on the SrTiO3 substrates.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2236
Author(s):  
Arántzazu Núñez-Cascajero ◽  
Fernando B. Naranjo ◽  
María de la Mata ◽  
Sergio I. Molina

Compact Al0.37In0.63N layers were grown by radiofrequency sputtering on bare and 15 nm-thick AlN-buffered Si (111) substrates. The crystalline quality of the AlInN layers was studied by high-resolution X-ray diffraction measurements and transmission electron microscopy. Both techniques show an improvement of the structural properties when the AlInN layer is grown on a 15 nm-thick AlN buffer. The layer grown on bare silicon exhibits a thin amorphous interfacial layer between the substrate and the AlInN, which is not present in the layer grown on the AlN buffer layer. A reduction of the density of defects is also observed in the layer grown on the AlN buffer.


2019 ◽  
Vol 52 (1) ◽  
pp. 168-170
Author(s):  
Mieczyslaw A. Pietrzyk ◽  
Aleksandra Wierzbicka ◽  
Marcin Stachowicz ◽  
Dawid Jarosz ◽  
Adrian Kozanecki

Control of nanostructure growth is a prerequisite for the development of electronic and optoelectronic devices. This paper reports the growth conditions and structural properties of ZnMgO nanowalls grown on the Si face of 4H-SiC substrates by molecular beam epitaxy without catalysts and buffer layers. Images from scanning electron microscopy revealed that the ZnMgO nanowalls are arranged in parallel rows following the stripe morphology of the SiC surface, and their thickness is around 15 nm. The crystal quality of the structures was evaluated by X-ray diffraction measurements.


Sign in / Sign up

Export Citation Format

Share Document