scholarly journals Possible impacts of temperature changes on recreational and tourist activities in Ukraine’s regions

Author(s):  
T. Safranov ◽  
V. Khokhlov ◽  
A. Volkov

Temperature is one of the main meteorological parameters. It determines the weather and climatic conditions, and impacts on human activities. Weather and climate conditions (precisely air temperature) are the most important factors which affect natural and recreational resources and also stipulate recreational and tourist activities. The article discusses the possible impact of air temperature changes from 2021 to 2050 on recreational and tourist activities in Ukrainian regions. We have analyzed the data gathered by 85 observation stations which are located in various Ukrainian regions. The analysis was based on scenario due to average level of greenhouse gases emissions (medium climate change pattern) for 30 years (2021-2050). The coastal zone in North-western part of the Black Sea has one of the high level of recreational-tourism potential. The fore-cast in this region makes rather small increasing of the temperature in summer time. So, it has not significant influence to the present forms of recreation and tourism activities. The research indicates that changes in average annual, average summer and winter air temperatures according to the scenario will not significantly affect the possibility of summer recreational and tourism activities. Also climate changes will not affect sustainable development of recreation and the level of thermal impact on recreants (tourists) within Ukrainian regions. Following this climate change scenario we don’t anticipate significant deterioration of weather conditions for winter recreation and tourism activities, especially for the Ukrainian Carpathians.

Author(s):  
Marta Monder

The genetic pool of valuable old ornamental cultivars and their in situ maintenance may be threated by climate change. Meanwhile, the ornamental plants like roses make up an important share of both gardens and urban green spaces, where they are particularly vulnerable to multistress growth conditions. The aim of this research was to evaluate the effect of changing climatic conditions on growth and flowering of 11 historic climber roses through long-term studies (2000-2017) conducted in Central Europe. The evaluation of plants consisted of assessment of frost damage and the timing of early phenological stages (starting of bud break, leaf unfolding) as well as gathering data on beginning, fullness and end of flowering and its abundance. Frost damage was not recorded in any year only in ‘Mme Plantier’, and did not occur for any cultivar after the winter in the years 2007, 2008, and 2014. Only a little damage to one-year shoots was recorded after the winter in the years 2015-2017. Frost damage to ‘Alberic Barbier’, ‘Albertine’, ‘Chaplin's Pink Climber’, ‘Orange Triumph clg’ and ‘Venusta Pendula’ led to pruning to ground level in every year excluding those listed above. Frost damage of once blooming roses limited their flowering; however, the many-year data-sets showed a trend for decreased frost damage and improved abundance of flowering, and these results can be interpreted as a response to the increase of average air temperature. The timing of bud breaking and leaf development in all climber roses was strictly correlated with average air temperature in the dormancy period. The reactions of climber roses to weather conditions confirmed the influence of climatic changes on ornamental crop plants in Central Europe, introducing the potential possibility for the wider application of climber roses, but without certainty of flowering every year.


2021 ◽  
Vol 28 (Supplement_1) ◽  
Author(s):  
L Kuzma ◽  
A Kurasz ◽  
M Niwinska ◽  
EJ Dabrowski ◽  
M Swieczkowski ◽  
...  

Abstract Funding Acknowledgements Type of funding sources: None. Background Acute coronary syndromes (ACS) are the leading cause of death all over the world, in the last years chronobiology of their occurrence has been changing. Purpose The aim of this study was to assess the influence of climate change on hospital admissions due to ACS. Methods Medical records of 10,529 patients hospitalized for ACS in 2008–2017 were examined. Weather conditions data were obtained from the Institute of Meteorology. Results Among the patients, 3537 (33.6%) were hospitalized for STEMI, 3947 (37.5%) for NSTEMI, and 3045 (28.9%) for UA. The highest seasonal mean for ACS was recorded in spring (N = 2782, mean = 2.52, SD = 1.7; OR 1.07; 95% CI 1.0-1.2; P = 0.049) and it was a season with the highest temperature changes day to day (Δ temp.=11.7). On the other hand, every 10ºC change in temperature was associated with an increased admission due to ACS by 13% (RR 1.13; 95% CI 1.04-1.3; P = 0.008). Analysis of weekly changes showed that the highest frequency of ACS occurred on Thursday (N = 1703, mean = 2.7, SD = 1.9; OR 1.16; 95% CI 1.0-1.23; P = 0.004), in STEMI subgroup it was Monday (N = 592, mean = 0.9, SD = 1.6, OR 1.2; 95% CI 1.1-1.4; P = 0.002). Sunday was associated with decreased admissions due to all types of ACS (N = 1098, mean = 1.7, SD = 1.4; OR 0.69; 95% CI 0.6-0.8, P < 0.001). In the second half of the study period (2013-2018) the relative risks of hospital admissions due to ACS were 1.043 (95%CI: 1.009-1.079, P = 0.014, lag 0) and 0.957 (95%CI: 0.925-0.990, P = 0.010, lag 1) for each 10ºC decrease in temperature; 1.049 (95% CI: 1.015-1.084, P = 0.004, lag 0) and 1.045 (95%CI: 1.011-1.080, P = 0.008, lag 1) for each 10 hPa decrease in atmospheric pressure and 1.180 (95% CI: 1.078-1.324, P = 0.007, lag 0) for every 10ºC change in temperature. For the first half of the study the risk was significantly lower. Conclusion We observed a shift in the seasonal peak of ACS occurrence from winter to spring which may be related to temperature fluctuation associated with climate change in this season. The lowest frequency of ACS took place on weekends. Atmospheric changes had a much more pronounced effect on admissions due to ACS in the second half of the analyzed period, which is in line with the dynamics of global climate change.


Author(s):  
V. V. Hrynchak

The decision about writing this article was made after familiarization with the "Brief Climatic Essay of Dnepropetrovsk City (prepared based on observations of 1886 – 1937)" written by the Head of the Dnipropetrovsk Weather Department of the Hydrometeorological Service A. N. Mikhailov. The guide has a very interesting fate: in 1943 it was taken by the Nazis from Dnipropetrovsk and in 1948 it returned from Berlin back to the Ukrainian Hydrometeorological and Environmental Directorate of the USSR, as evidenced by a respective entry on the Essay's second page. Having these invaluable materials and data of long-term weather observations in Dnipro city we decided to analyze climate changes in Dnipropetrovsk region. The article presents two 50-year periods, 1886-1937 and 1961-2015, as examples. Series of observations have a uniform and representative character because they were conducted using the same methodology and results processing. We compared two main characteristics of climate: air temperature and precipitation. The article describes changes of average annual temperature values and absolute temperature values. It specifies the shift of seasons' dates and change of seasons' duration. We studied the changes of annual precipitation and peculiarities of their seasonable distribution. Apart from that peculiarities of monthly rainfall fluctuations and their heterogeneity were specified. Since Dnipro city is located in the center of the region the identified tendencies mainly reflect changes of climatic conditions within the entire Dnipropetrovsk region.


Formulation of the problem. Understanding that solar energy is the main source of the majority of biological, chemical and physical processes on Earth, investigation of its influence on different climatic fields allows us to define the features of its space and hour fluctuations. To define radiation and temperature regime of the territory it is necessary to determine climatic features of the spreading surface, which absorbs and will transform solar energy. Considering the fact that modern climatic changes and their consequences cover all components of the system, today there is a problem of their further study for comprehension of atmospheric processes, modeling weather conditions on different territories depending on the properties. The purpose of the article is to determine interrelations between indexes of solar radiation (the Wolf's number) and air temperature, atmospheric pressure on the territory of Ukraine during 1965-2015, their change in space and time. Methods. Correlative method is one of the main methods of a statistical analysis which allows us to receive correlation coefficients of solar radiation variability indexes, air temperature, atmospheric pressure on the territory of the research. This technique estimates the extent of solar radiation influence on temperature regime of the territory and distribution of atmospheric pressure. Results. Coefficients of correlation, which characterize variability of solar radiation indexes, air temperature and atmospheric pressure on the explored territory have been received by means of statistical correlation analysis method. This technique allows us to estimate the degree and nature of solar radiation influence on a temperature regime of the territory and distribution of atmospheric pressure. It has been defined that direct correlative connection between indexes of solar radiation is characteristic of air temperature and atmospheric pressure fields. Significant statistical dependence between incoming solar radiation on the territory of Ukraine and atmospheric pressure has been noted during the spring and autumn periods mainly at the majority of stations. Between indexes of solar radiation and air temperature the inverse correlative connection in winter will be transformed to a direct connection during the spring and summer periods. Scientific novelty and practical significance. Physical processes, which happen in the atmosphere, are characterized by complex interrelations. For further research it is important to define solar radiation value and the extent of influence on climatic conditions.


NeoBiota ◽  
2020 ◽  
Vol 58 ◽  
pp. 129-160
Author(s):  
Anna Schertler ◽  
Wolfgang Rabitsch ◽  
Dietmar Moser ◽  
Johannes Wessely ◽  
Franz Essl

The coypu (Myocastor coypus) is a semi-aquatic rodent native to South America which has become invasive in Europe and other parts of the world. Although recently listed as species of European Union concern in the EU Invasive Alien Species Regulation, an analysis of the current European occurrence and of its potential current and future distribution was missing yet. We collected 24,232 coypu records (corresponding to 25,534 grid cells at 5 × 5 km) between 1980 and 2018 from a range of sources and 28 European countries and analysed them spatiotemporally, categorising them into persistence levels. Using logistic regression, we constructed consensus predictions across all persistence levels to depict the potential current distribution of the coypu in Europe and its change under four different climate scenarios for 2041–2060. From all presence grid cells, 45.5% showed at least early signs of establishment (records temporally covering a minimum of one generation length, i.e. 5 years), whereas 9.8% were considered as containing established populations (i.e. three generation lengths of continuous coverage). The mean temperature of the warmest quarter (bio10), mean diurnal temperature range (bio2) and the minimum temperature of the coldest month (bio6) were the most important of the analysed predictors. In total, 42.9% of the study area are classified as suitable under current climatic conditions, of which 72.6% are to current knowledge yet unoccupied; therefore, we show that the coypu has, by far, not yet reached all potentially suitable regions in Europe. Those cover most of temperate Europe (Atlantic, Continental and Pannonian biogeographic region), as well as the coastal regions of the Mediterranean and the Black Sea. A comparison of the suitable and occupied areas showed that none of the affected countries has reached saturation by now. Under climate change scenarios, suitable areas will slightly shift towards Northern regions, while a general decrease in suitability is predicted for Southern and Central Europe (overall decrease of suitable areas 2–8% depending on the scenario). Nevertheless, most regions that are currently suitable for coypus are likely to be so in the future. We highlight the need to further investigate upper temperature limits in order to properly interpret future climatic suitability for the coypu in Southern Europe. Based on our results, we identify regions that are most at risk for future invasions and provide management recommendations. We hope that this study will help to improve the allocation of efforts for future coypu research and contribute to harmonised management, which is essential to reduce negative impacts of the coypu and to prevent further spread in Europe.


2020 ◽  
pp. 1264-1274
Author(s):  
P.H. Zaidi ◽  
Thanh Nguyen ◽  
Dang N. Ha ◽  
Suriphat Thaitad ◽  
Salahuddin Ahmed ◽  
...  

Most parts of the Asian tropics are hotspots of climate change effects and associated weather variabilities. One of the major challenges with climate change is the uncertainty and inter-annual variability in weather conditions as crops are frequently exposed to different weather extremes within the same season. Therefore, agricultural research must strive to develop new crop varieties with inbuilt resilience towards variable weather conditions rather than merely tolerance to individual stresses in a specific situation and/or at a specific crop stage. C4 crops are known for their wider adaptation to range of climatic conditions. However, recent climatic trends and associated variabilities seem to be challenging the threshold limit of wider adaptability of even C4 crops like maize. In collaboration with national programs and private sector partners in the region, CIMMYT-Asia maize program initiated research for development (R4D) projects largely focusing on saving achievable yields across range of variable environments by incorporating reasonable levels of tolerance/resistance to major abiotic and biotic stresses without compromising on grain yields under optimal growing conditions. By integrating novel breeding tools like - genomics, double haploid (DH) technology, precision phenotyping and reducing genotype × environment interaction effects, a new generation of maize germplasm with multiple stress tolerance that can grow well across variable weather conditions were developed. The new maize germplasm were targeted for stress-prone environments where maize is invariability exposed to a range of sub-optimal growing conditions, such as drought, heat, waterlogging and various virulent diseases. The overarching goal of the stress-resilient maize program has been to achieve yield potential with a downside risk reduction.


Author(s):  
Yuri Chendev ◽  
Maria Lebedeva ◽  
Olga Krymskaya ◽  
Maria Petina

The ongoing climate change requires a quantitative assessment of the impact of weather conditions on the nature and livelihoods of the population. However, to date, the concept of “climate risk” has not been finally defined, and the corresponding terminology is not universally recognized. One manifestation of climate change is an increase in climate variability and extremeness in many regions. At the same time, modern statistics indicate growing worldwide damage from dangerous weather and climate events. The most widely used in climate services is the concept of “Vulnerability index”, which reflects a combination (with or without weighing) of several indicators that indicate the potential damage that climate change can cause to a particular sector of the economy. development of adaptation measures to ensure sustainable development of territories. The main criterion for the vulnerability of the territory from the point of view of meteorological parameters is the extremeness of the basic values: daily air temperature, daily precipitation, maximum wind speed. To fully take into account the possible impacts of extreme climatic conditions on the region’s economy, it is necessary to detail the weather and climate risks taking into account the entire observation network, since significant differences in quantitative assessment are possible. The obtained average regional values of the climate vulnerability indices for the Belgorod Region of the Russian Federation provide 150 points for the winter period, 330 points for the summer season, which indicates the prevalence of extreme weather conditions in the warm season. Most of the territory has a relative influence on climatic phenomena, with the exception of the East and the Southeast Region. Moreover, the eastern part of the region is the most vulnerable in climatic terms.


2021 ◽  
pp. 145-156
Author(s):  
Manzoor Hussain ◽  
Ljupcho Jankuloski ◽  
M. Habib-ur-Rahman ◽  
Massoud Malek ◽  
Md. Kamrul Islam ◽  
...  

Abstract Cotton, being a leading commercial fibre crop, is grown on 20.5 million hectares in three major cotton-producing countries: China, India and Pakistan. Wide differences in yield per hectare exist among these countries and these are being aggravated by changing climate conditions, i.e. higher temperatures and significant seasonal and regional fluctuation in rainfall. Pakistan is one of the countries most affected by climate change. The disastrous effects of extreme periods of heat stress in cotton were very prominent in Pakistan during the growing seasons 2013-2014 (40-50% fruit abortion) and 2016-2017 (33% shortfall), which posed an alarming threat to the cotton-based economy of Pakistan. Poor resilience of the most commonly grown cotton varieties against extreme periods of heat stress are considered to be major factors for this drastic downfall in cotton production in Pakistan. Using the approach of induced mutation breeding, the Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad, Pakistan, has demonstrated its capabilities in developing cotton mutants that can tolerate the changed climatic conditions and sustain high yields under contrasting environments. The results of studies on the phenological and physiological traits conferring heat tolerance are presented here for thermo-tolerant cotton mutants (NIAB-878, NIAB-545, NIAB-1048, NIAB-444, NIAB-1089, NIAB-1064, NIAB-1042) relative to FH-142 and FH-Lalazar. NIAB-878 excelled in heat tolerance by maintaining the highest anther dehiscence (82%) and minimum cell injury percentage (39%) along with maximum stomatal conductance (27.7 mmol CO2/m2/s), transpiration rate (6.89 μmol H2O/m2/s), net photosynthetic rate (44.6 mmol CO2/m2/s) and physiological water use efficiency (6.81 mmol CO2/μmol H2O) under the prevailing high temperatures.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Dan-Dan Yu ◽  
Shan Li ◽  
Zhong-Yang Guo

The evaluation of climate comfort for tourism can provide information for tourists selecting destinations and tourism operators. Understanding how climate conditions for tourism evolve is increasingly important for strategic tourism planning, particularly in rapidly developing tourism markets like China in a changing climate. Multidimensional climate indices are needed to evaluate climate for tourism, and previous studies in China have used the much criticized “climate index” with low resolution climate data. This study uses the Holiday Climate Index (HCI) and daily data from 775 weather stations to examine interregional differences in the tourist climate comfortable period (TCCP) across China and summarizes the spatiotemporal evolution of TCCP from 1981 to 2010 in a changing climate. Overall, most areas in China have an “excellent” climate for tourism, such that tourists may visit anytime with many choices available. The TCCP in most regions shows an increasing trend, and China benefits more from positive effects of climate change in climatic conditions for tourism, especially in spring and autumn. These results can provide some scientific evidence for understanding human settlement environmental constructions and further contribute in improving local or regional resilience responding to global climate change.


Author(s):  
Valentina Petrovna Gorbatenko ◽  
Marina Alexandrovna Volkova ◽  
Olga Vladimirovna Nosyreva ◽  
George Georgievich Zhuravlev ◽  
Irina Valerievna Kuzhevskaia

Current climate changes in Russia are attended by the increase in frequency of dangerous weather events. This chapter researches long-term variations of the dangerous weather's events on Western Siberia and to reveal general regularity, which can be associated with forest fires. The researches have been carried out for the territories of southeast of Western Siberia. The duration of the fire season increases due to climate change. This is due both to the earlier snowfall and the onset of the phenological spring, and to the increase in the duration of the thunderstorm period. Thunderstorms in Siberia are a much more frequent cause of forest fires (28%) than in other territories. Wildfire frequency is correlated with air temperature and drought anomalies.


Sign in / Sign up

Export Citation Format

Share Document