Improving sustainable cotton production through enhanced resilience to climate change using mutation breeding.

2021 ◽  
pp. 145-156
Author(s):  
Manzoor Hussain ◽  
Ljupcho Jankuloski ◽  
M. Habib-ur-Rahman ◽  
Massoud Malek ◽  
Md. Kamrul Islam ◽  
...  

Abstract Cotton, being a leading commercial fibre crop, is grown on 20.5 million hectares in three major cotton-producing countries: China, India and Pakistan. Wide differences in yield per hectare exist among these countries and these are being aggravated by changing climate conditions, i.e. higher temperatures and significant seasonal and regional fluctuation in rainfall. Pakistan is one of the countries most affected by climate change. The disastrous effects of extreme periods of heat stress in cotton were very prominent in Pakistan during the growing seasons 2013-2014 (40-50% fruit abortion) and 2016-2017 (33% shortfall), which posed an alarming threat to the cotton-based economy of Pakistan. Poor resilience of the most commonly grown cotton varieties against extreme periods of heat stress are considered to be major factors for this drastic downfall in cotton production in Pakistan. Using the approach of induced mutation breeding, the Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad, Pakistan, has demonstrated its capabilities in developing cotton mutants that can tolerate the changed climatic conditions and sustain high yields under contrasting environments. The results of studies on the phenological and physiological traits conferring heat tolerance are presented here for thermo-tolerant cotton mutants (NIAB-878, NIAB-545, NIAB-1048, NIAB-444, NIAB-1089, NIAB-1064, NIAB-1042) relative to FH-142 and FH-Lalazar. NIAB-878 excelled in heat tolerance by maintaining the highest anther dehiscence (82%) and minimum cell injury percentage (39%) along with maximum stomatal conductance (27.7 mmol CO2/m2/s), transpiration rate (6.89 μmol H2O/m2/s), net photosynthetic rate (44.6 mmol CO2/m2/s) and physiological water use efficiency (6.81 mmol CO2/μmol H2O) under the prevailing high temperatures.

2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Dan-Dan Yu ◽  
Shan Li ◽  
Zhong-Yang Guo

The evaluation of climate comfort for tourism can provide information for tourists selecting destinations and tourism operators. Understanding how climate conditions for tourism evolve is increasingly important for strategic tourism planning, particularly in rapidly developing tourism markets like China in a changing climate. Multidimensional climate indices are needed to evaluate climate for tourism, and previous studies in China have used the much criticized “climate index” with low resolution climate data. This study uses the Holiday Climate Index (HCI) and daily data from 775 weather stations to examine interregional differences in the tourist climate comfortable period (TCCP) across China and summarizes the spatiotemporal evolution of TCCP from 1981 to 2010 in a changing climate. Overall, most areas in China have an “excellent” climate for tourism, such that tourists may visit anytime with many choices available. The TCCP in most regions shows an increasing trend, and China benefits more from positive effects of climate change in climatic conditions for tourism, especially in spring and autumn. These results can provide some scientific evidence for understanding human settlement environmental constructions and further contribute in improving local or regional resilience responding to global climate change.


Coral Reefs ◽  
2019 ◽  
Vol 38 (6) ◽  
pp. 1241-1253 ◽  
Author(s):  
S. Rosset ◽  
G. Koster ◽  
J. Brandsma ◽  
A. N. Hunt ◽  
A. D. Postle ◽  
...  

Abstract Climate change-induced global warming threatens the survival of key ecosystems including shallow water coral reefs. Elevated temperatures can disrupt the normal physiological functioning of photosynthetic organisms by altering the fluidity and permeability of chloroplast membranes that is defined and regulated by their lipid composition. Since the habitat-forming reef corals rely on the obligatory symbiosis with dinoflagellates of the family Symbiodiniaceae, their heat stress response can be expected to be strongly influenced by the symbiont's lipid metabolism. However, in contrast to the steady increase in the knowledge of the functioning of coral symbionts at the genomic and transcriptomic level, the understanding of their membrane lipid composition and regulation in response to temperature stress is lagging behind. We have utilised mass spectrometry-based lipidomic analyses to identify the key polar lipids that form the biological membranes of reef coral symbionts, comparing the thermotolerant species Durusdinium trenchii with the thermosensitive taxon Cladocopium C3, both hosted by Acropora valida. Our results indicate that the superior thermotolerance D. trenchii inside the host corals could be achieved through (1) the amount and saturation of sulfoquinovosyldiacylglycerols, in particular through putative photosystem II interactions, (2) the increased digalactosyldiacylglycerol to monogalactosyldiacylglycerol ratio with the potential to stabilise thylakoid membranes and integrated proteins, and (3) the chaperone-like function of lyso-lipids. Thereby, our study provides novel insights into the heat tolerance of coral symbionts, contributing to the understanding of the potential of coral reef ecosystems to respond and adjust to heat stress events that are becoming more frequent due to climate change. Finally, our identification of multiple mechanisms of heat tolerance in Symbiodiniaceae furthers the knowledge of the general stress physiology of photosynthetic organisms.


1956 ◽  
Vol 7 (5) ◽  
pp. 469 ◽  
Author(s):  
DF Dowling

The ability of cattle to maintain a normal body temperature in a dry, hot, inland Australian environment is associated with their ability to dissipate excess heat from the body. A heat tolerance test, based on rectal temperature responses after exercise, is reported. This test indicates the animal's capacity to lose heat. Forty animals, classified on their coat covering, were included in the experiments described. The differences in coat covering are described and associated with differences in rectal temperature under various forms of heat stress. The results serve to illustrate the basic weaknesses of any field test (or hot-room test) which cannot be carried out under conditions where major factors influencing the "adaptability" and type of coat can be kept uniform for all animals tested.


2020 ◽  
Author(s):  
Matti Kummu ◽  
Matias Heino ◽  
Maija Taka ◽  
Olli Varis ◽  
Daniel Viviroli

<p>The majority of global food production, as we know it, is based on agricultural practices developed within stable Holocene climate conditions. Climate change is altering the key conditions for human societies, such as precipitation, temperature and aridity. Their combined impact on altering the conditions in areas where people live and grow food has not yet, however, been systematically quantified on a global scale. Here, we estimate the impacts of two climate change scenarios (RCP 2.6, RCP 8.5) on major population centres and food crop production areas at 5 arc-min scale (~10 km at equator) using Holdridge Life Zones (HLZs), a concept that incorporates all the aforementioned climatic characteristics. We found that if rapid growth of GHG emissions is not halted (RCP 8.5), in year 2070, one fifth of the major food production areas and one fourth of the global population centres would experience climate conditions beyond the ones where food is currently produced, and people are living. Our results thus reinforce the importance of following the RCP 2.6 path, as then only a small fraction of food production (5%) and population centres (6%) would face such unprecedented conditions. Several areas experiencing these unprecedented conditions also have low resilience, such as those within Burkina Faso, Cambodia, Chad, and Guinea-Bissau. In these countries over 75% of food production and population would experience unprecedented climatic conditions under RCP 8.5. These and many other hotspot areas require the most urgent attention to secure sustainable development and equity.</p>


2015 ◽  
Vol 61 (4) ◽  
pp. 669-689 ◽  
Author(s):  
Pamela D. Noyes ◽  
Sean C. Lema

Abstract Global climate change is impacting organisms, biological communities and ecosystems around the world. While most research has focused on characterizing how the climate is changing, including modeling future climatic conditions and predicting the impacts of these conditions on biodiversity, it is also the case that climate change is altering the environmental impacts of chemical pollution. Future climate conditions are expected to influence both the worldwide distribution of chemicals and the toxicological consequences of chemical exposures to organisms. Many of the environmental changes associated with a warming global climate (e.g., increased average – and possibly extreme – temperatures; intense periods of drier and wetter conditions; reduced ocean pH; altered salinity dynamics in estuaries) have the potential to enhance organism susceptibility to chemical toxicity. Additionally, chemical exposures themselves may impair the ability of organisms to cope with the changing environmental conditions of the shifting climate. Such reciprocity in the interactions between climate change and chemicals illustrates the complexity inherent in predicting the toxicological consequences of chemical exposures under future climate scenarios. Here, we summarize what is currently known about the potential reciprocal effects of climate change and chemical toxicity on wildlife, and depict current approaches and ongoing challenges for incorporating climate effects into chemical testing and assessment. Given the rapid pace of new man-made chemistries, the development of accurate and rapid methods to evaluate multiple chemical and non-chemical stressors in an ecologically relevant context will be critical to understanding toxic and endocrine-disrupting effects of chemical pollutants under future climate scenarios.


Author(s):  
João Esdras Lima ◽  
Maria do Céu Monteiro Cruz ◽  
Deilson de Almeida Alves ◽  
Núbia Cassiana Santos ◽  
Amanda Gonçalves Guimarães

Abstract: The objective of this work was to evaluate the effect of pruning and training system type on the agronomic performance of the perennial cultivation of physalis (Physalis peruviana), in high-altitude tropical and humid temperate regions in Southeastern Brazil. The experiments were carried out in the municipalities of Diamantina (humid temperate climate) and Couto de Magalhães de Minas (high-altitude tropical climate), both in the state of Minas Gerais, in two cycles (2017/2018 and 2018/2019). In the first cycle, two types of training system were evaluated, one with formation pruning to define the number of stems for espalier training and the other free (without pruning and espalier). In the second cycle, renewal pruning was evaluated in each training system. Physalis cultivation in regions with humid temperate climate and mild temperatures favors high yields and large fruits. The training system in espalier with formation pruning facilitates plant management and increases productivity. The viability of the perennial cultivation of physalis varies according to the climatic conditions of the cultivation site and to the training system adopted.


2011 ◽  
Vol 8 (5) ◽  
pp. 8793-8830 ◽  
Author(s):  
M. Renner ◽  
R. Seppelt ◽  
C. Bernhofer

Abstract. Long term average change in streamflow is a major concern in hydrology and water resources management. Some simple analytical methods exist for the assessment of the sensitivity of streamflow to climatic variations. These are based on the Budyko hypothesis, which assumes that long term average streamflow can be predicted by climate conditions, namely by annual average precipitation and evaporative demand. Recently, Tomer and Schilling (2009) presented an ecohydrological concept to distinguish between effects of climate change and basin characteristics change on streamflow. We provide a theoretical foundation of this concept by showing that it is based on a coupled consideration of the water and energy balance. The concept uses a special condition that the sum of the ratio of annual actual evapotranspiration to precipitation and the ratio of actual to potential evapotranspiration is constant, even when climate conditions are changing. Here we apply this assumption and derive analytical solutions to the problem of streamflow sensitivity on climate. We show how climate sensitivity is influenced by different climatic conditions and the actual hydrological response of a basin. Finally, the properties and implications of the new method are compared with established Budyko sensitivity methods.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e10357
Author(s):  
Maria Hällfors ◽  
Susanna Lehvävirta ◽  
Tone Aandahl ◽  
Iida-Maria Lehtimäki ◽  
Lars Ola Nilsson ◽  
...  

Ongoing anthropogenic climate change alters the local climatic conditions to which species may be adapted. Information on species’ climatic requirements and their intraspecific variation is necessary for predicting the effects of climate change on biodiversity. We used a climatic gradient to test whether populations of two allopatric varieties of an arctic seashore herb (Primula nutans ssp. finmarchica) show adaptation to their local climates and how a future warmer climate may affect them. Our experimental set-up combined a reciprocal translocation within the distribution range of the species with an experiment testing the performance of the sampled populations in warmer climatic conditions south of their range. We monitored survival, size, and flowering over four growing seasons as measures of performance and, thus, proxies of fitness. We found that both varieties performed better in experimental gardens towards the north. Interestingly, highest up in the north, the southern variety outperformed the northern one. Supported by weather data, this suggests that the climatic optima of both varieties have moved at least partly outside their current range. Further warming would make the current environments of both varieties even less suitable. We conclude that Primula nutans ssp. finmarchica is already suffering from adaptational lag due to climate change, and that further warming may increase this maladaptation, especially for the northern variety. The study also highlights that it is not sufficient to run only reciprocal translocation experiments. Climate change is already shifting the optimum conditions for many species and adaptation needs also to be tested outside the current range of the focal taxon in order to include both historic conditions and future conditions.


Forests ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 684
Author(s):  
Yang Liu ◽  
Juan Shi

Climate change is predicted to alter the geographic distribution of a wide variety of taxa, including insects. Icerya aegyptiaca (Douglas) and I. purchasi Maskell are two polyphagous and invasive pests in the genus Icerya Signoret (Hemiptera: Monophlebidae) and cause serious damage to many landscape and economic trees. However, the global habitats suitable for these two Icerya species are unclear. The purpose of this study is to determine the potentially suitable habitats of these two species, then to provide scientific management strategies. Using MaxEnt software, the potential risk maps of I. aegyptiaca and I. purchasi were created based on their occurrence data under different climatic conditions and topology factors. The results suggested that under current climate conditions, the potentially habitable area of I. aegyptiaca would be much larger than the current distribution and there would be small changes for I. purchasi. In the future climate change scenarios, the suitable habitats of these two insect species will display an increasing trend. Africa, South America and Asia would be more suitable for I. aegyptiaca. South America, Asia and Europe would be more suitable for I. purchasi. Moreover, most of the highly habitat suitability areas of I. aegyptiaca will become concentrated in Southern Asia. The results also suggested that “min temperature of coldest month” was the most important environmental factor affecting the prediction models of these two insects. This research provides a theoretical reference framework for developing policies to manage and control these two invasive pests of the genus Icerya.


2016 ◽  
Vol 2 (6) ◽  
pp. e1501026 ◽  
Author(s):  
Leonie Wenz ◽  
Anders Levermann

Assessing global impacts of unexpected meteorological events in an increasingly connected world economy is important for estimating the costs of climate change. We show that since the beginning of the 21st century, the structural evolution of the global supply network has been such as to foster an increase of climate-related production losses. We compute first- and higher-order losses from heat stress–induced reductions in productivity under changing economic and climatic conditions between 1991 and 2011. Since 2001, the economic connectivity has augmented in such a way as to facilitate the cascading of production loss. The influence of this structural change has dominated over the effect of the comparably weak climate warming during this decade. Thus, particularly under future warming, the intensification of international trade has the potential to amplify climate losses if no adaptation measures are taken.


Sign in / Sign up

Export Citation Format

Share Document