scholarly journals THE TARGET DETECTION ON THE SEA SURFACE BASED ON STANDARD DEVIATION OF THE MAXIMUM EIGENVALUE OF THE POLARIZATION COVARIANCE MATRIX

Author(s):  
T. Pham

This paper proposes a novel method to detect small sea targets, using polarimetric radar. The standard deviation of maximum eigenvalue of the polarization covariance matrix is ultilized for the detection. In order to evaluate the new algorithm in practical applications, the real data collected from polarimetric IPIX radar at MC Master University is tested with the new algorithm, and the result is displayed on the radar screen. The results of this method is also compared with those of the DoP and SP-GLR methods. Initial results show that the novel method significantly improves the detectability of small sea targets on the sea surface. 

2014 ◽  
Vol 215 ◽  
pp. 459-461
Author(s):  
Alexander S. Samardak ◽  
Margarita V. Anisimova ◽  
Alexey V. Ognev ◽  
Vadim Yu. Samardak ◽  
Liudmila A. Chebotkevich

We present a novel method of pattern nanofabrication with high resolution and small shape defects using the traditional electron-beam lithography (EBL) or only a scanning electron microscope (SEM). Our method of Spot EBL is extremely fast, highly scalable on big areas, capable of sub-20 nm resolution and fabrication of polymer patterns with complicated shapes. We show the nanostructure images fabricated by Spot EBL and propose practical applications of the novel method.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Zhenyuan Ji ◽  
Chunlei Yi ◽  
Junhao Xie ◽  
Yang Li

This paper deals with the problem of sea clutter suppression for shipborne high frequency surface wave radar (HFSWR) based on the joint domain localized (JDL) adaptive processing algorithm. The performance of the novel method is compared with 2D FFT plus digital beamforming (FFT-DBF) and orthogonal weight in different azimuths. The results based on simulated and real data show that the novel method provides higher detection performance than others.


2018 ◽  
Vol 7 (4) ◽  
pp. 2848
Author(s):  
Pallavi Agrawal ◽  
Madhu Shandilya

In this work, the novel method of blind source separation using Bayesian Probabilistic approach is discussed for instantaneous mixtures. This work demonstrates the source separation problem which is well suited for the Bayesian approach. This work also provides a natural and logically consistent method in which prior knowledge can be incorporated to estimate the most probable solution. The distri-butions of the coefficients of the sources in the basis are modeled by a generalized Gaussian distribution (GGD) which is dependent on the sparsity parameter q. This method also utilizes prior distribution of the appropriate sparsity parameter of sources present in the mixture. Once, the prior distribution for each parameter (like mixing matrix, source matrix, sparsity parameter and error or noise covariance matrix) are defined, the Bayesian a posterior probabilistic approach using Markov chain Monte Carlo (MCMC) method is exploited in estimation of a posterior distribution of mixing matrix, source matrix, sparsity parameter and covariance matrix of error. The blind source separation provides the results in the form of signal to distortion ratio (SDR), signal to artifacts ratio (SAR) and signal to interference ratio (SIR) at different SNR.  


2010 ◽  
Vol 6 (2) ◽  
pp. 155-160
Author(s):  
Ganden Supriyanto ◽  
Jürgen Simon

A novel method is proposed for the hydride separation when determinining of arsenic and antimony by AAS. A chromatomembrane cell was used as preconcentration-, extraction- and separation-manifold instead of the U-tube phase separator, which is normally fitted in continuous flow vapour systems generating conventionaly the hydrides. The absorbances of the hydrides produced were measured by an atomic absorption spectrophotometer at 193.7 nm and 217.6 nm. Under optimized analytical conditions, the calibration plot for arsenic was linear from 50 to 500 ng.mL-1 (r2 = 0.9982). The precision for three subsequent measurements of 500 ng.mL-1 arsenic gave rise to a relative standard deviation of 0.4%. The detection limit was 15 ng.mL-1, which is much lower compared with that of the conventional hydride system (2000 ng.mL-1). A similar result was observed in case of antimony: the detection limit was 8 ng.mL-1 when the proposed method was applied. Consequently, the sensitivity of the novel method surpasses systems with conventional hydride generation, i.e. the precision and the acuracy increase whereas the standard deviation and the detection limit decrease. The proposed method was applied in pharmacheutial analysis and the certified As-content of a commercial product was very sufficiently confirmed.   Keywords: Chromatomembrane Cell, Hydride separation, Arsenic detection, Antimony detection, AAS


TAPPI Journal ◽  
2012 ◽  
Vol 11 (10) ◽  
pp. 9-17
Author(s):  
ALESSANDRA GERLI ◽  
LEENDERT C. EIGENBROOD

A novel method was developed for the determination of linting propensity of paper based on printing with an IGT printability tester and image analysis of the printed strips. On average, the total fraction of the surface removed as lint during printing is 0.01%-0.1%. This value is lower than those reported in most laboratory printing tests, and more representative of commercial offset printing applications. Newsprint paper produced on a roll/blade former machine was evaluated for linting propensity using the novel method and also printed on a commercial coldset offset press. Laboratory and commercial printing results matched well, showing that linting was higher for the bottom side of paper than for the top side, and that linting could be reduced on both sides by application of a dry-strength additive. In a second case study, varying wet-end conditions were used on a hybrid former machine to produce four paper reels, with the goal of matching the low linting propensity of the paper produced on a machine with gap former configuration. We found that the retention program, by improving fiber fines retention, substantially reduced the linting propensity of the paper produced on the hybrid former machine. The papers were also printed on a commercial coldset offset press. An excellent correlation was found between the total lint area removed from the bottom side of the paper samples during laboratory printing and lint collected on halftone areas of the first upper printing unit after 45000 copies. Finally, the method was applied to determine the linting propensity of highly filled supercalendered paper produced on a hybrid former machine. In this case, the linting propensity of the bottom side of paper correlated with its ash content.


Axioms ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 18
Author(s):  
Marouane Mahrouf ◽  
Adnane Boukhouima ◽  
Houssine Zine ◽  
El Mehdi Lotfi ◽  
Delfim F. M. Torres ◽  
...  

The novel coronavirus disease (COVID-19) pneumonia has posed a great threat to the world recent months by causing many deaths and enormous economic damage worldwide. The first case of COVID-19 in Morocco was reported on 2 March 2020, and the number of reported cases has increased day by day. In this work, we extend the well-known SIR compartmental model to deterministic and stochastic time-delayed models in order to predict the epidemiological trend of COVID-19 in Morocco and to assess the potential role of multiple preventive measures and strategies imposed by Moroccan authorities. The main features of the work include the well-posedness of the models and conditions under which the COVID-19 may become extinct or persist in the population. Parameter values have been estimated from real data and numerical simulations are presented for forecasting the COVID-19 spreading as well as verification of theoretical results.


2021 ◽  
Vol 11 (2) ◽  
pp. 582
Author(s):  
Zean Bu ◽  
Changku Sun ◽  
Peng Wang ◽  
Hang Dong

Calibration between multiple sensors is a fundamental procedure for data fusion. To address the problems of large errors and tedious operation, we present a novel method to conduct the calibration between light detection and ranging (LiDAR) and camera. We invent a calibration target, which is an arbitrary triangular pyramid with three chessboard patterns on its three planes. The target contains both 3D information and 2D information, which can be utilized to obtain intrinsic parameters of the camera and extrinsic parameters of the system. In the proposed method, the world coordinate system is established through the triangular pyramid. We extract the equations of triangular pyramid planes to find the relative transformation between two sensors. One capture of camera and LiDAR is sufficient for calibration, and errors are reduced by minimizing the distance between points and planes. Furthermore, the accuracy can be increased by more captures. We carried out experiments on simulated data with varying degrees of noise and numbers of frames. Finally, the calibration results were verified by real data through incremental validation and analyzing the root mean square error (RMSE), demonstrating that our calibration method is robust and provides state-of-the-art performance.


Author(s):  
Zaheer Ahmed ◽  
Alberto Cassese ◽  
Gerard van Breukelen ◽  
Jan Schepers

AbstractWe present a novel method, REMAXINT, that captures the gist of two-way interaction in row by column (i.e., two-mode) data, with one observation per cell. REMAXINT is a probabilistic two-mode clustering model that yields two-mode partitions with maximal interaction between row and column clusters. For estimation of the parameters of REMAXINT, we maximize a conditional classification likelihood in which the random row (or column) main effects are conditioned out. For testing the null hypothesis of no interaction between row and column clusters, we propose a $$max-F$$ m a x - F test statistic and discuss its properties. We develop a Monte Carlo approach to obtain its sampling distribution under the null hypothesis. We evaluate the performance of the method through simulation studies. Specifically, for selected values of data size and (true) numbers of clusters, we obtain critical values of the $$max-F$$ m a x - F statistic, determine empirical Type I error rate of the proposed inferential procedure and study its power to reject the null hypothesis. Next, we show that the novel method is useful in a variety of applications by presenting two empirical case studies and end with some concluding remarks.


Author(s):  
A.T Walden ◽  
T Medkour

An ellipse describes the polarized part of a partially polarized quasi-monochromatic plane wave field. Its azimuth angle and aspect ratio are functions of the elements of the covariance matrix associated with the polarized part at a particular time instant. Given an ensemble of K independent samples at that time, the distributions of the estimators of these parameters are derived. The estimation is thus based on a sample ensemble at any time, and does not assume temporal stationarity. Additionally, the azimuth angle estimator has an angular distribution so that non-standard statistical methods are needed when deriving its mean and standard deviation.


Languages ◽  
2021 ◽  
Vol 6 (3) ◽  
pp. 123
Author(s):  
Thomas A. Leddy-Cecere

The Arabic dialectology literature repeatedly asserts the existence of a macro-level classificatory relationship binding the Arabic speech varieties of the combined Egypto-Sudanic area. This proposal, though oft-encountered, has not previously been formulated in reference to extensive linguistic criteria, but is instead framed primarily on the nonlinguistic premise of historical demographic and genealogical relationships joining the Arabic-speaking communities of the region. The present contribution provides a linguistically based evaluation of this proposed dialectal grouping, to assess whether the postulated dialectal unity is meaningfully borne out by available language data. Isoglosses from the domains of segmental phonology, phonological processes, pronominal morphology, verbal inflection, and syntax are analyzed across six dialects representing Arabic speech in the region. These are shown to offer minimal support for a unified Egypto-Sudanic dialect classification, but instead to indicate a significant north–south differentiation within the sample—a finding further qualified via application of the novel method of Historical Glottometry developed by François and Kalyan. The investigation concludes with reflection on the implications of these results on the understandings of the correspondence between linguistic and human genealogical relationships in the history of Arabic and in dialectological practice more broadly.


Sign in / Sign up

Export Citation Format

Share Document