scholarly journals Features of systems greasing of diesel engines MANB&W

2020 ◽  
Vol 1 ◽  
pp. 144-151
Author(s):  
V.M. Bogach ◽  
◽  
J.M. Dovidenko ◽  
I.M. Slobodianiuk ◽  

The abstract The publication is devoted the decision of an actual problem increase efficiency operation of ship diesel engines by perfection processes greasing of cylinders. The analysis a condition of a question on an investigated problem is made and lacks systems greasing of diesel engines MAN-B&W are defined. Experimental researches on studying processes greasing of cylinders of ship engines that has allowed to receive representation about an overall performance these systems are spent. Modern methods researches, such as oscillograms and high-speed filming are thus used. Characteristics process greasing, and their interrelation with a design of greasing devices are defined. Influence geometrical parametres of channels system greasing on characteristics process the expiration of oil in the cylinder and finally on efficiency its use in the engine is experimentally confirmed. Keywords: ship diesel engine, greasing system, greasing channel, greasing process, cylinder, piston, a piston ring.

2019 ◽  
Vol 39 (1) ◽  
pp. 22-29
Author(s):  
В.М. Богач ◽  
◽  
◽  
◽  

The publication is devoted the decision of an actual problem increase efficiency operation of ship diesel engines by perfection processes greasing of cylinders. The analysis a condition of a question on an investigated problem is made and lacks systems greasing of diesel engines RTA are defined. Experimental researches on studying processes greasing of cylinders of ship engines that has allowed to receive representation about an overall performance these systems are spent. Modern methods researches, such as oscillograms and high-speed filming are thus used. By these researches it is defined, that greasing process is accompanied by "pushing out" a part oil in the cylinder, gases extending in the channel that causes a real loss of cylinder oils and occurrence an additional source deposits. Characteristics process greasing, and their interrelation with a design of greasing devices are defined. Influence geometrical parametres of channels system greasing on characteristics process the expiration of oil in the cylinder and finally on efficiency its use in the engine is experimentally confirmed.


Author(s):  

The necessity of adapting diesel engines to work on vegetable oils is justified. The possibility of using rapeseed oil and its mixtures with petroleum diesel fuel as motor fuels is considered. Experimental studies of fuel injection of small high-speed diesel engine type MD-6 (1 Ch 8,0/7,5)when using diesel oil and rapeseed oil and computational studies of auto-tractor diesel engine type D-245.12 (1 ChN 11/12,5), working on blends of petroleum diesel fuel and rapeseed oil. When switching autotractor diesel engine from diesel fuel to rapeseed oil in the full-fuel mode, the mass cycle fuel supply increased by 12 %, and in the small-size high-speed diesel engine – by about 27 %. From the point of view of the flow of the working process of these diesel engines, changes in other parameters of the fuel injection process are less significant. Keywords diesel engine; petroleum diesel fuel; vegetable oil; rapeseed oil; high pressure fuel pump; fuel injector; sprayer


2015 ◽  
Vol 4 (1) ◽  
pp. 1-10 ◽  
Author(s):  
D.N. Basavarajappa ◽  
N. R. Banapurmath ◽  
S.V. Khandal ◽  
G. Manavendra

For economic and social development of any country energy is one of the most essential requirements. Continuously increasing price of crude petroleum fuels in the present days coupled with alarming emissions and stringent emission regulations has led to growing attention towards use of alternative fuels like vegetable oils, alcoholic and gaseous fuels for diesel engine applications. Use of such fuels can ease the burden on the economy by curtailing the fuel imports. Diesel engines are highly efficient and the main problems associated with them is their high smoke and NOx emissions.  Hence there is an urgent need to promote the use of alternative fuels in place of high speed diesel (HSD) as substitute. India has a large agriculture base that can be used as a feed stock to obtain newer fuel which is renewable and sustainable. Accordingly Uppage oil methyl ester (UOME) biodiesel was selected as an alternative fuel. Use of biodiesels in diesel engines fitted with mechanical fuel injection systems has limitation on the injector opening pressure (300 bar). CRDI system can overcome this drawback by injecting fuel at very high pressures (1500-2500 bar) and is most suitable for biodiesel fuels which are high viscous. This paper presents the performance and emission characteristics of a CRDI diesel engine fuelled with UOME biodiesel at different injection timings and injection pressures. From the experimental evidence it was revealed that UOME biodiesel yielded overall better performance with reduced emissions at retarded injection timing of -10° BTDC in CRDI mode of engine operation.


Author(s):  
Michael E. Iden

Abstract The ASME Rail Transportation Division submitted five nominations in 2019 for ASME Historic Mechanical Engineering Landmark status. The nominations are for examples of significant railway technologies involving mechanical engineering and built between 1920 and 1964: 1. SBB 14253 “Crocodile” locomotive (1920): pioneering electric heavy-duty Swiss mountain locomotive, with pioneering features found in many subsequent electric locomotives. 2. Winton 8-201 prototype diesel engine (1933): only surviving of two experimental engines which preceded all GM-Electro-Motive 2-stroke cycle diesel engines for locomotives and other applications; first locomotive diesel engine with lightweight welded steel crankcase and unitized fuel injectors. 3. B&O 50 locomotive (1935): sole surviving example of the first (5) standalone, modular, non-articulated high-speed diesel locomotives from Electro-Motive, functional prototypes for the later “E” passenger and “FT” freight locomotives. 4. Cooper-Bessemer prototype diesel engine (1953): sole surviving example of (4) predecessor 4-stroke cycle diesel engines built for GE Transportation for field test locomotives prior to GE becoming a domestic locomotive manufacturer. 5. SP 9010 locomotive (1964): sole surviving example of (21) experimental German-built diesel locomotives for heavy-duty US mountain railroad operation using a hydromechanical torque converter transmission instead of electric traction motors; proved concept of higher-power and improved wheel-to-rail adhesion. All five nominations were submitted to the ASME national History & Heritage Committee for review. This paper provides a description of each nomination and the status of each proposed railroad Historic Mechanical Engineering Landmark.


2019 ◽  
Vol 21 (9) ◽  
pp. 1662-1677 ◽  
Author(s):  
Xinyi Zhou ◽  
Tie Li ◽  
Yijie Wei ◽  
Ning Wang

Scaled model experiments can greatly reduce the cost, time and energy consumption in diesel engine development, and the similarity of spray characteristics has a primary effect on the overall scaling results of engine performance and pollutant emissions. However, although so far the similarity of spray characteristics under the non-evaporating condition has been studied to some extent, researches on scaling the evaporating sprays are still absent. The maximum liquid penetration length has a close relationship with the spray evaporation processes and is a key parameter in the design of diesel engine spray combustion system. In this article, the similarity of maximum liquid penetration length is theoretically derived based on the hypotheses that the spray evaporation processes in modern high-pressure common rail diesel engines are fuel–air mixing controlled and local interphase transport controlled, respectively. After verifying that the fuel injection rates are perfectly scaled, the similarity of maximum liquid penetration length in evaporating sprays is studied for three scaling laws using two nozzles with hole diameter of 0.11 and 0.14 mm through the high-speed diffused back-illumination method. Under the test conditions of different fuel injection pressures, ambient temperatures and densities, the lift-off law and speed law lead to a slightly increased maximum liquid penetration length, while the pressure law can well scale the maximum liquid penetration length. The experimental results are consistent with the theoretical analyses based on the hypothesis that the spray evaporation processes are fuel–air mixing controlled, indicating that the local interphase transports of energy, momentum and mass on droplet surface are not rate-controlled steps with respect to spray evaporation processes.


Author(s):  
Fridolin Unfug ◽  
Uwe Wagner ◽  
Kai W. Beck ◽  
Juergen Pfeil ◽  
Ulf Waldenmaier ◽  
...  

To fulfil strict emission regulations and the need for higher efficiency of future Diesel engines require an optimized combustion process. Optical investigations represent a powerful tool for getting a better understanding of the ongoing processes. For medium speed Diesel engines, optical investigations are relatively rare or not available. The “Institut für Kolbenmaschinen” (IFKM) and MAN Diesel & Turbo SE performed extensive optical in-situ investigations of the injection and combustion process of a MAN 32/44 CR single cylinder medium speed Diesel engine that provide previously unavailable insights into the ongoing processes. The optical investigations aimed on fuel spray visualization, high-speed soot luminescence measurement and two colour pyrometry applied for five combustion chamber regions. To apply the optical measurement techniques, two optical accesses were designed. Access no. 1 is placed near the cylinder liner. Access no. 2 is located close to the injector in a 46° angle to the cylinder vertical axis. An insert was used which consists of an illumination port and a visualization endoscope. Additionally some special nozzle designs were used beside the standard nozzle, which have one separated nozzle hole. This enables a simultaneous view from both optical accesses on the same flame cone. For Mie-Scattering investigation a pulsed Nd:YAG-Laser with 532 nm wavelength was used for illumination and a CCD-camera with an upstream 532 nm optical filter was used for visualization. This combination allows observing the liquid fuel distribution even after start of combustion. Penetration depth of liquid fuel spray was analysed for different swirl numbers, intake manifold pressures, injection timings and injection pressures. High-speed flame visualization was done by two CMOS cameras which were mounted at two different optical accesses with view on the same flame cone. Due to this application a simultaneous measurement of the flame distribution of two different views was possible. This enables a 3-dimensional investigation of the flame propagation process. In addition, the advanced two colour pyrometry was applied for five different regions of the same flame cone. Due to a calibration after each measurement the absolute radiant flux can be calculated and thus the absolute temperature and soot concentration. With this procedure it was possible to give a real temperature and soot concentration distribution of the flame cone. To provide more detailed information about the combustion process, selected engine operation points were simulated with a modified version of the CFD code KIVA3v-Release2 at the IFKM. The simulated results were compared to the measured data.


2021 ◽  
Vol 2131 (5) ◽  
pp. 052058
Author(s):  
O Roslyakova ◽  
V Zaitsev ◽  
D Panov

Abstract Nowadays, a lot is paid to environmental protection issues, including those related to reducing emissions from ships of the sea and river fleet, which is reflected in many works. Constant control over the content of harmful emissions in the environment forces us to deal with the issues of reducing emissions from diesel engines at the design stages and during operation. The solution to this problem allows us to consider 2 directions: constructional and the use of special equipment for capture and neutralization. In the best case, a combined method can be used, i.e. constructional with the use of capturing equipment for harmful components in diesel exhaust gases. This paper presents an analysis of the influence of various factors that reduce the load on the atmospheric air from nitrogen oxides of marine diesel engines, namely, from the operating settings of the diesel engine and its wear. On the ships of the river fleet, diesel engines are used with various mixture formation with volumetric, volumetric-film, vortex mixture formation. The leader in the listed group is the volumetric mixture engines. The paper provides an assessment of the research carried out to analyze various methods of influencing the working process of a diesel engine - the type of mixture formation, wear of the cylinder sleeve in order to determine their influence on the formation of NOx emissions.


Author(s):  
Shiyou Yang ◽  
Kangyao Deng ◽  
Yi Cui ◽  
Hongzhong Gu

A new turbocharging system, named automatically variable intake exhaust injection timing (AVIEIT), is proposed. Its main purpose is to improve the performance of low-speed high torque operating conditions and improve the economy of high-speed operating conditions for high-speed supercharged intercooled diesel engines. The principle of the AVIEIT turbocharging system is presented. A control mechanism for the proposed AVIEIT system used for a truck diesel engine is introduced. An engine simulation code has been developed. In this code, a zero-dimensional in-cylinder combustion model, a one-dimensional finite volume method-total variation diminishing model for unsteady gas flow in the intake and exhaust manifolds, and a turbocharger model are used. The developed code is used to simulate the performances of diesel engines using the AVIEIT system. Simulations of a military use diesel engine “12V150” and a truck diesel engine “D6114” using the AVIEIT system have been performed. Simulation results show that the in-cylinder charge air amount of the diesel engine with the AVIEIT system is increased at low-speed high torque operating conditions, and the fuel economy is improved at high-speed operating conditions. In order to test the idea of the AVIEIT system, an experiment on a truck diesel engine D6114 equipped with an AVIEIT control mechanism has been finished. The experiment results show that the AVIEIT system can improve the economy of high-speed operating conditions. Both the simulation and experiment results suggest that the AVIEIT system has the potential to replace the waste-gate and variable geometry turbocharger turbocharging systems.


2020 ◽  
pp. 146808742096198
Author(s):  
V Vikraman ◽  
K Anand ◽  
A Ramesh

Low compression ratio (LCR) approach in diesel engines can reduce the oxides of nitrogen (NOx) and soot emissions simultaneously owing to lower temperatures and longer fuel-air premixing time. The present work investigates the effects of lowering the geometric compression ratio (CR) from 18:1 to 14:1 in a naturally aspirated (NA) single cylinder common rail direct injection (CRDI) diesel engine. Based on the investigations done across the entire speed and load range, significant benefits were observed in the NOx and soot emissions. However, lowering the compression ratio had adverse effects on brake specific fuel consumption (BSFC), unburned hydrocarbon (HC) and carbon monoxide (CO) emissions, especially at low-load and high-speed operating points. To overcome these limitations, novel strategies including split-cooling system (SCS) and secondary exhaust valve opening (SEVO) are proposed in the present work. While the fuel injection parameters optimization specific to LCR could help to improve the BSFC, HC and CO emissions penalty to a reasonable extent, the SCS concept can provide further benefits by reducing the heat loss to coolant and improving the engine component temperatures. Increasing the residual gas fraction using the optimized SEVO concept could further improve the charge temperature leading to a further reduction in the BSFC, HC and CO emissions. The net benefits of the optimized LCR approach are quantified for the modified Indian drive cycle (MIDC) using a one-dimensional simulation tool. The results obtained show a signification reduction of 22% and 74% in NOx and soot emissions respectively as compared to the base 18 CR engine results. Moreover, the penalty in HC and CO emissions could be contained to a large extent resulting in only a slight penalty of 23% and 20% respectively. Furthermore, the higher BSFC with the LCR approach could be successfully addressed and the final values were found to be better than the stock compression ratio by 1.5%. Overall, the strategies proposed in the present work are found to be beneficial to develop modern diesel engines in compliance with the future emission regulations which demand extreme control on NOx and soot emissions.


2016 ◽  
Vol 18 (7) ◽  
pp. 752-762 ◽  
Author(s):  
Rik D Meininger ◽  
Chol-Bum M Kweon ◽  
Michael T Szedlmayer ◽  
Khanh Q Dang ◽  
Newman B Jackson ◽  
...  

The objective of this study was to develop knock criteria for aviation diesel engines that have experienced a number of malfunctions during flight and ground operation. Aviation diesel engines have been vulnerable to knock because they use cylinder wall coating on the aluminum engine block, instead of using steel liners. This has been a trade-off between reliability and lightweighting. An in-line four-cylinder four-stroke direct-injection high-speed turbocharged aviation diesel engine was tested to characterize its combustion at various ground and flight conditions for several specially formulated Jet A fuels. The main fuel property chosen for this study was cetane number, as it significantly impacts the combustion of the aviation diesel engines. The other fuel properties were maintained within the MIL-DTL-83133 specification. The results showed that lower cetane number fuels showed more knock tendency than higher cetane number fuels for the tested aviation diesel engine. In this study, maximum pressure rise rate, or Rmax, was used as a parameter to define knock criteria for aviation diesel engines. Rmax values larger than 1500 kPa/cad require correction to avoid potential mechanical and thermal stresses on the cylinder wall coating. The finite element analysis model using the experimental data showed similarly high mechanical and thermal stresses on the cylinder wall coating. The developed diesel knock criteria are recommended as one of the ways to prevent hard knock for engine developers to consider when they design or calibrate aviation diesel engines.


Sign in / Sign up

Export Citation Format

Share Document