Predictive control of the starting pressure of the main oil pipeline

2021 ◽  
pp. 125-133
Author(s):  
A. U. Yakupov ◽  
D. A. Cherentsov ◽  
S. Yu. Toropov ◽  
M. Yu. Zemenkova ◽  
A. B. Shabarov ◽  
...  

The article calculates the starting pressures and the time of safe shutdown of the pipeline during the transportation of high-viscosity and high pour point oils, the rheological properties of which depend on temperature. When the oil temperature decreases, its viscosity increases and paraffins are released, forming a strong structure, for which additional stress is necessary to shift. To start a stopped oil pipeline transporting oil with such characteristics, the pressure developed by the pumps may not be enough. In this regard, it is necessary to determine the safe time of stopping the oil pipeline. The relevance increases with an increase in the share of high-viscosity and high pour point oil in the total production volume. Predictive control, based on the analysis of data on the characteristics of the transported product and forecasting the nature of their changes, is an intelligent tool for managing the efficiency of technological transport enterprises. Predictive control allows you to choose the optimal way to ensure reliable and trouble-free operation of the main equipment of hydrocarbon transport systems.A numerical experiment was carried out for the effect of seasonal cooling devices to protect permafrost soils from thawing, at the time of a safe shutdown of the oil pipeline. The values of starting pressures have been determined. Dependence of the pressures on the duration of the safe shutdown of the pipeline has been established. It was revealed that due to the operation of seasonally operating cooling devices, the difference between the temperature soil and oil increases during cooling, and the cooling rate increases. More pressure will be required to launch such an oil pipeline.

Author(s):  
Берик Картанбаевич Саяхов ◽  
Александр Геннадьевич Дидух ◽  
Гульнара Амангельдиевна Габсаттарова ◽  
Марат Давлетович Насибулин ◽  
Жасулан Канатович Наурузбеков

На начальных участках магистрального нефтепровода Узень - Атырау - Самара формируются партии низкозастывающих бузачинских и высокозастывающих мангышлакских нефтей. По маршруту транспортировки осуществляются дополнительные подкачки нефтей с различными физико-химическими и реологическими характеристиками, что может оказывать существенное влияние на свойства перекачиваемых нефтесмесей. Цель настоящей работы - исследование физико-химических и реологических свойств бузачинской и мангышлакской нефтесмесей на маршруте поставки Узень - Атырау, а также диапазона и причин изменений характеристик бузачинской нефти (основной в компонентном составе нефтесмесей, перекачиваемых по нефтепроводу Узень - Атырау - Самара). По результатам исследований установлено, что свойства мангышлакской нефтесмеси изменяются в незначительных пределах. Для бузачинской нефтесмеси свойственна нестабильность реологических параметров, которые могут изменяться в широком диапазоне в результате путевой подкачки на различных участках нефтепровода. Колебания реологических параметров наиболее показательных проб партий бузачинской нефтесмеси рекомендуется учитывать для решения задач повышения текучести высоковязких нефтей и оптимизации технологических режимов работы трубопроводов, по которым осуществляется перекачка таких нефтей. Методами газохроматографического анализа молекулярно-массового распределения тугоплавких парафинов и поляризационной микроскопии определена температура нагрева бузачинской и мангышлакской нефтесмесей, оптимальная для ввода депрессорной присадки. At the initial sections of the Uzen - Atyrau - Samara main oil pipeline, batches of low pour point Buzachinsky and high pour point Mangyshlak oils are formed. Additional pumping of oils with different physical, chemical and rheological characteristics is carried out along the transportation route, which can have a significant effect on the properties of the pumped oil mixtures. The purpose of this study is to examine the physical, chemical and rheological properties of Buzachi and Mangyshlak oil mixtures on the Uzen - Atyrau supply route, as well as the range and causes of changes in the characteristics of Buzachinsky oil (the main oil mixture in the blend composition pumped through the Uzen - Atyrau - Samara pipeline). According to the research results, it was found that the properties of the Mangyshlak oil mixture vary within insignificant limits. The Buzachinsky oil mixture is characterized by instability of rheological parameters, which can vary in a wide range as a result of route pumping at different pipeline sections. Fluctuations of the rheological parameters of the most indicative samples of batches of the Buzachinsky oil mixture are recommended to be taken into account in order to increase the fluidity of high-viscosity oils and optimize the process modes of operation of pipelines through which such oils are pumped. Using the methods of gas chromatographic analysis of the molecular weight distribution of high-melting-point paraffins, as well as polarization microscopy, the optimal heating temperature for the introduction of a pour point depressant into the Buzachinsky and Mangyshlak oil mixtures has been determined.


2019 ◽  
pp. 120-126 ◽  
Author(s):  
Azamat U. Yakupov ◽  
Dmitry A. Cherentsov ◽  
Konstantin S. Voronin ◽  
Yuri D. Zemenkov

Conducting thermal calculations of "hot" oil pipelines through which high-viscosity and high-sticking oils are transported is one of the main ones. Determining the rate of cooling of oil in a stopped pipeline is of practical importance. According to the cooling rate, the time to safely stop the "hot" pipeline is calculated. This is the time at which the "hot" oil pipeline doesn’t freeze and the station’s pressure is enough to overcome the shear stresses arising during the cooling f high-viscosity and high-sticking oil. Oil cooling in underground stopped pipelines depends on the temperature of the soil around it. Installed heat stabilizers designed to cool the soil can affect the cooling rate of the "hot" pipeline. We have carried out a numerical experiment using modern tools of mathematical modelling. The experiment showed that the installed soil heat stabilizers near the underground "hot" pipeline have an impact on the process of cooling oil. These stabilizers have reduced the time to safely stop the pipeline.


Author(s):  
Марат Замирович Ямилев ◽  
Азат Маратович Масагутов ◽  
Александр Константинович Николаев ◽  
Владимир Викторович Пшенин ◽  
Наталья Алексеевна Зарипова ◽  
...  

Теплогидравлический расчет неизотермических трубопроводов является наиболее важным гидравлическим расчетом в рамках решения задач обеспечения надежности и безопасности работы нефтепроводной системы. Для практических расчетов применяются формулы Дарси - Вейсбаха и Лейбензона. При этом в ряде случаев (короткие теплоизолированные участки, поверхностный обогрев нефтепроводов) можно использовать упрощенный подход к расчету, пренебрегая изменением температуры или учитывая температурные поправки. В настоящее время формулы для аналитического расчета движения высоковязких нефтей в форме уравнения Лейбензона получены только для ньютоновской и вязкопластичной жидкостей. Для степенной жидкости соответствующие зависимости отсутствуют, расчет ведется с использованием формулы Дарси - Вейсбаха. Целью настоящей статьи является представление формулы Дарси - Вейсбаха для изотермических течений степенной жидкости в форме уравнения Лейбензона. Данное представление позволит упростить процедуру проведения аналитических выкладок. В результате получены модифицированные уравнения Лейбензона для определения потери напора на участке нефтепровода в диапазоне индекса течения от 0,5 до 1,25. В указанном диапазоне относительное отклонение от результатов расчетов с использованием классических формул Метцнера - Рида и Ирвина не превышает 2 %. The thermal-hydraulic calculation of non-isothermal pipelines is the most important hydraulic calculation in the framework of solving the problems of ensuring the reliability and safety of the oil pipeline system. For practical calculations, the Darcy - Weisbach and Leibenson formulas are used. Moreover, in a number of cases (short heat-insulated sections, surface heating of oil pipelines), a simplified approach to the calculation can be used, neglecting temperature changes or taking into account temperature corrections. At present, formulas for the analytical calculation of the motion of high-viscosity oils in the form of the Leibenson equation have been obtained only for Newtonian and viscoplastic fluids. For a power-law fluid, there are no corresponding dependences; the calculation is carried out using the Darcy - Weisbach formula. The purpose of this article is to present the Darcy - Weisbach formula for isothermal flows of a power-law fluid in the Leibenzon form, which will simplify the procedure for performing analytical calculations. The modified Leibenzon equations are obtained to determine the head loss in the oil pipeline section in the range of the flow index from 0.5 to 1.25. In the specified range, the relative deviation from the results of calculations using the classical Metzner - Reed and Irwin formulas does not exceed 2 %.


2016 ◽  
Vol 12 (3A) ◽  
pp. 159
Author(s):  
Heince A. A. Lolowang ◽  
Vicky V. J. Palenewen ◽  
Arie D. P. Mirah

This study aims to find out how much benefit the clove farmers got and how much Break Event Point (BEP) in volume and price of production were obtained by clove farmers. The research was conducted by colecting primary data through interviews using a structured simple questionnaire. Interviews were conducted in the Suluun Raya Village, Sub-district of Suluun Tareran. Total samples are 30 respondents. It has selected intentionally (purposive sampling). To achieve the research objectives, the indicator analysis used the analysis of production, cost, revenue and profit. Total production of cloves from 30 respondents in the Village of Suluun Raya was 33,020 kg with an average production of 1,100.6 kg, for a total cost of IDR 1,587,078,500, with an average of IDR 52,902,617, for a total revenue of IDR 3.22865 billion with an average of IDR 107,621,666.7, and for a total profit of IDR 1,699,232,967 with an average of IDR 54.71905 million. Clove businesses in the Village of Suluun Raya has given benefits to farmers where the value of average of Revenue- Cost Ratio obtained 1.80. Thus clove farm in the village of Suluun Raya was very profitable. The Break Event Point volume of production was reached when the production rate of 542.942 kg. Average production volume of clove farmers was 1101 Kg means that clove businesses profitable for farmers. The Break Event Point was reached when the price of production of IDR 48 050/kg. Average price of cloves of IDR 97 433/kg means that the price of cloves in the Village of Suluun Raya profitable for farmers.


2017 ◽  
Vol 2 (03) ◽  
pp. 23-31
Author(s):  
Imam Sulaiman

The objectives of this research are to: (1) To analyze the cost, income and income of chicken and chicken cattle in Bangu Harjo Village, Buay Madang Timur District, OKU Timur Regency, (2) To analyze whether broiler and joper cattle cultivated in Bangun Harjo Village, Buay Madang Timur Sub-district, OKU Timur Regency is beneficial, (3) To analyze break even point of broiler and joper livestock business in Bangun Harjo Village, Buay Madang Timur District, OKU Timur Regency. This research has been conducted in Bangun Harjo Village, Buay Madang Timur District, East OKU Regency. Site selection is done purposively with the consideration that in the village is able to represent from the existing population and have the criteria of research plan. Bangun Harjo village is a village whose majority population live as farmers and there are some farmers who seek the cultivation of super chicken (joper) and broiler (broiler). The study was conducted in June 2015. The study found that the total production cost incurred in the poultry livestock business in Bangun Harjo Village in one production process amounted to Rp 13,963,744, the average revenue was Rp 22,920,000 so that income Received amounted to Rp 8,956,256. The value of R / C ratio is 1.64 indicating that the chicken livestock business is profitable. The total production cost incurred in the broiler business in Bangun Harjo Village in one production process is Rp 30,609,006, the average revenue is Rp 54,676,250, so the income received is Rp 24,067,224. The value of R / C ratio is 1.79 indicates that the business of broiler livestock is profitable and BEP value of livestock production volume of chicken joper is 349 head, while the value of BEP price is Rp 24.569 / Tail and BEP value of broiler chicken production volume is equal to 2.017 Kg, while the BEP value of the price is Rp 8,496 / Kg which shows that the business of chicken and broiler cattle in Bangun Harjo Village is feasible financially.


2020 ◽  
Vol 69 (1) ◽  
pp. 56-61
Author(s):  
L. Yermekkyzy ◽  

The results of solving the inverse problem of determining the hydraulic resistance of a main oil pipeline are presented. The formulation of the inverse problem is formulated, a numerical method for solving the system of equations is described. The hydraulic resistance of the pipeline during the "hot" pumping of high-curing and high-viscosity oil changes during operation. Oil temperature decreases along the length of the pipeline due to heat transfer from the soil, leading to an increase in oil viscosity and an increase in hydraulic resistance.The dependence of the hydraulic resistance of the pipeline on the parameters of oil pumping is determined by solving the inverse problem. The inverse problem statement consists of a system of equations of laws of conservation of momentum, mass, energy and hydraulic resistance in the form of Altshul with unknown coefficients. The system of partial differential equations of hyperbolic type for speed and pressure is solved by the numerical method of characteristics, and the heat transfer equations by the iterative method of running counting.


Author(s):  
Tao Yu ◽  
Peng Dong ◽  
Yang Yu ◽  
Jinzhou Song ◽  
Jie Zhang

Abstract Due to the high pour point of the oil products transported in the long-distance high wax crude oil pipeline, in order to ensure the operation safety, it is necessary to adopt heating transmission technology, so as to ensure that the oil temperature along the pipeline is 3–5 °C higher than the pour point, that is to say, the oil temperature is the most important operation parameter of the long-distance hot oil pipeline, and the accurate prediction and control of the oil temperature is the premise of the pipeline safety optimization. Aiming at the problems of large prediction error and poor applicability of the previous theoretical formula, this paper studies the establishment of oil temperature prediction model by using data mining algorithms such as Back Propagation (BP) neural network, and improves the prediction efficiency and accuracy of the model by using Genetic Algorithm (GA) optimization. The correlation coefficient formula is used to calculate the influence coefficient of oil temperature, ground temperature, pipeline transportation and other parameters on the inlet oil temperature of the downstream station, so as to obtain the input parameters of the model. The actual production data training model is downloaded through SCADA system, and the prediction accuracy of the control model is ±0.5 °C. Compared with BP model and other theoretical formulas, the accuracy and efficiency of GA-BP oil temperature prediction model are greatly improved, and the adaptability is better. The GA-BP oil temperature prediction model trained according to the actual production data can be effectively applied to the future pipeline big data platform, which lays a theoretical foundation for the intelligent control of the pipeline.


Author(s):  
Fabien Ravet ◽  
Christian Silva ◽  
Rodolfo Gil ◽  
Simon Maguire ◽  
Etienne Rochat

Abstract Pipelines often cross challenging terrains where natural hazards are the main risk for their integrity. Environmental conditions can also worsen over the infrastructure lifetime. To reduce the risk of disasters, integrity programs are developed implementing tools for early detection of threats that can lead to a failure with dramatic social, environmental and economic consequences. Fiber optic (FO) monitoring solutions have been widely used and implemented as one of the most efficient prevention tools of these programs. These solutions include geotechnical monitoring, third party intrusion detection and eventually small or pinhole like leak detection. FO based geotechnical monitoring has been successfully operated along the Sierra section of the Peru LNG pipeline since 2010, detecting minor landslides and erosion events. It has also been implemented along other hydrocarbon transport systems to allow the early detection of such events. However, these natural hazards are not the only ones threatening the pipeline. In fact, the coastal section experiences other phenomenon such as sand dune migration and eolian erosion that put the pipeline at risk. Recently, the FO monitoring was extended to the coastal region using the existing communication fiber optic cable to sense temperature changes. Very localized events are thermally detected, their spatial and temporal signature analyzed. The comparison of this data with thermal models identified sections that are close to be exposed or whose soil cover is less than 50cm over a spatial extension that does not exceed a couple of meters. Depth of cover of 10 to 30cm is estimated from such analysis. These results are confirmed by past and ongoing site inspections. Such positive results again illustrate the potential value of fiber optic sensing to mitigate geohazard risks. It not only enhances the efficiency of the integrity program detecting and localizing threats, it also improves and rationalizes the maintenance activities as focused surveys can be conducted.


2019 ◽  
Vol 265 ◽  
pp. 02019
Author(s):  
Sergei Kudriavtcev ◽  
Viacheslav Kovshun

Weak thawing soils around the metal piles pose the main danger when constructing oil pipelines or other engineering structures located in the cryolithozone. The occurrence of ice inside soil causes thermokarst dips and settlement while thawing. High-precision calculations of the load-bearing capacity of soils and accurate forecasts of the amount of thawing in summer are necessary for improving the reliability of engineering structures. Thermopiles are used to prevent thawing of soils around piles and thermally stabilize the permafrost condition. In this article, one of such decisions is considered on the example of oil pipeline along «Kuyumba – Taishet Kozmino» route in Russia. There are permafrost and deformations of the soil body in the base of oil pipeline. The proposed method implies the joint operation of holding soils in frozen state with help of season-cooling devices or thermopiles. It was concluded that special geotechnical engineering for permafrost projects is necessary to avoid the main problems. In order to achieve the goals of the present investigation, the geotechnical software complex «FEM-models» with «Termoground» was used.


Author(s):  
Jun Chen ◽  
Jinjun Zhang ◽  
Hongying Li

Waxy crudes are generally pipelined by means of heating. In general, the friction loss of a pipeline decreases with decreasing flow rate. This is the case of isothermal pipeline. However, a hot oil pipeline operated at low flow rate might show a contrary case, i.e. friction-loss increases with decreasing flow rate. This is an unstable operation state and may result in disastrous consequence of flow ceasing if tackled improperly. For a waxy crude pipeline, this may also be exaggerated by the non-Newtonian flow characteristics at temperatures near the pour point. That is to say, there may exist a critical flow rate for pipelines transporting heated waxy crude, and in order to ensure safe operation, the flow rate of a pipeline transporting hot oil should be no less than this critical flow rate. Based on theoretical analysis and can study, the hydraulic characteristics of pipelines transporting hot waxy crudes was investigated, and an empirical model was developed correlating the critical flow rate QC and the pipelining parameters, such as the average overall heat transfer coefficient, the ground temperature, the heating temperature, etc. Another relationship was found between TZC, the outlet temperature of the pipeline corresponding to the critical flow rate, and the critical flow rate. This TZC is also the lowest pipeline outlet temperature that ensures the normal pipelining operation state. Case study on a 720mm O.D. pipeline transporting heated Daqing waxy crude with a pour point of 36 °C showed that the TZC was in a range of 31∼34.2°C.


Sign in / Sign up

Export Citation Format

Share Document