scholarly journals Edible insects as a source of food bioactives and their potential health effects

2021 ◽  
Vol 14 ◽  
Author(s):  
Klaus Lange ◽  
Yukiko Nakamura

Entomophagy (consumption of insects) is an issue of global nutritional and environmental interest. The nutritional value of insects appears to be high, since they are rich in protein and fat and provide a range of vitamins and minerals. Edible insects contain similar amounts of protein to conventional meat and higher levels of polyunsaturated fatty acids. Due to their high content of protein, micronutrients and fiber, insects could become a valuable alternative to food derived from other animals. The findings of various in vitro and in vivo animal studies suggest beneficial effects of entomophagy with respect to cardiovascular, gastrointestinal and non-communicable diseases as well as immune functions and carcinogenesis. Edible insects appear to be a promising and insufficiently explored source of macronutrients, micronutrients and food bioactives. In the course of time, some edible insects may meet the criteria of functional food ingredients. However, there is a significant lack of research investigating health outcomes in humans. The available evidence in humans, derived from randomized controlled trials, suggests a role of edible insects in the promotion of mineral status and the modulation of gut microbiota, with some prebiotic effects. High-quality clinical studies assessing efficacy, oral intake safety and allergy risk are needed.

2021 ◽  
pp. 1-9
Author(s):  
Etsuo Niki

Reactive oxygen and nitrogen species have been implicated in the onset and progression of various diseases and the role of antioxidants in the maintenance of health and prevention of diseases has received much attention. The action and effect of antioxidants have been studied extensively under different reaction conditions in multiple media. The antioxidant effects are determined by many factors. This review aims to discuss several important issues that should be considered for determination of experimental conditions and interpretation of experimental results in order to understand the beneficial effects and limit of antioxidants against detrimental oxidation of biological molecules. Emphasis was laid on cell culture experiments and effects of diversity of multiple oxidants on antioxidant efficacy.


Antioxidants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1024
Author(s):  
Sebastien Dupont ◽  
Paul Fleurat-Lessard ◽  
Richtier Gonçalves Cruz ◽  
Céline Lafarge ◽  
Cédric Grangeteau ◽  
...  

Although the functions and structural roles of sterols have been the subject of numerous studies, the reasons for the diversity of sterols in the different eukaryotic kingdoms remain unclear. It is thought that the specificity of sterols is linked to unidentified supplementary functions that could enable organisms to be better adapted to their environment. Ergosterol is accumulated by late branching fungi that encounter oxidative perturbations in their interfacial habitats. Here, we investigated the antioxidant properties of ergosterol using in vivo, in vitro, and in silico approaches. The results showed that ergosterol is involved in yeast resistance to tert-butyl hydroperoxide and protects lipids against oxidation in liposomes. A computational study based on quantum chemistry revealed that this protection could be related to its antioxidant properties operating through an electron transfer followed by a proton transfer mechanism. This study demonstrates the antioxidant role of ergosterol and proposes knowledge elements to explain the specific accumulation of this sterol in late branching fungi. Ergosterol, as a natural antioxidant molecule, could also play a role in the incompletely understood beneficial effects of some mushrooms on health.


2021 ◽  
Vol 22 (3) ◽  
pp. 1347
Author(s):  
Anaïs Amend ◽  
Natalie Wickli ◽  
Anna-Lena Schäfer ◽  
Dalina T. L. Sprenger ◽  
Rudolf A. Manz ◽  
...  

As a key anti-inflammatory cytokine, IL-10 is crucial in preventing inflammatory and autoimmune diseases. However, in human and murine lupus, its role remains controversial. Our aim was to understand regulation and immunologic effects of IL-10 on different immune functions in the setting of lupus. This was explored in lupus-prone NZB/W F1 mice in vitro and vivo to understand IL-10 effects on individual immune cells as well as in the complex in vivo setting. We found pleiotropic IL-10 expression that largely increased with progressing lupus, while IL-10 receptor (IL-10R) levels remained relatively stable. In vitro experiments revealed pro- and anti-inflammatory IL-10 effects. Particularly, IL-10 decreased pro-inflammatory cytokines and slowed B cell proliferation, thereby triggering plasma cell differentiation. The frequent co-expression of ICOS, IL-21 and cMAF suggests that IL-10-producing CD4 T cells are important B cell helpers in this context. In vitro and in vivo effects of IL-10 were not fully concordant. In vivo IL-10R blockade slightly accelerated clinical lupus manifestations and immune dysregulation. Altogether, our side-by-side in vitro and in vivo comparison of the influence of IL-10 on different aspects of immunity shows that IL-10 has dual effects. Our results further reveal that the overall outcome may depend on the interplay of different factors such as target cell, inflammatory and stimulatory microenvironment, disease model and state. A comprehensive understanding of such influences is important to exploit IL-10 as a therapeutic target.


1992 ◽  
Vol 3 (4) ◽  
pp. 193-201 ◽  
Author(s):  
George G Zhanel ◽  
Daryl J Hoban ◽  
Godfrey KM Harding

Antimicrobial activity is not an ‘all or none’ effect. An increase in the rate and extent of antimicrobial action is usually observed over a wide range of antimicrobial concentrations. Subinhibitory antimicrobial concentrations are well known to produce significant antibacterial effects, and various antimicrobials at subinhibitory concentrations have been reported to inhibit the rate of bacterial growth. Bacterial virulence may be increased or decreased by subinhibitory antimicrobial concentrations by changes in the ability of bacteria to adhere to epithelial cells or by alterations in bacterial susceptibility to host immune defences. Animal studies performed in rats, hamsters and rabbits demonstrate decreased bacterial adherence, reduced infectivity and increased survival of animals treated with subinhibitory antimicrobial concentrations compared to untreated controls. The major future role of investigation of subinhibitory antimicrobial concentrations will be to define more fully, at a molecular level, how antimicrobials exert their antibacterial effects.


2013 ◽  
Vol 305 (11) ◽  
pp. L844-L855 ◽  
Author(s):  
Ming-Yuan Jian ◽  
Mikhail F. Alexeyev ◽  
Paul E. Wolkowicz ◽  
Jaroslaw W. Zmijewski ◽  
Judy R. Creighton

Acute lung injury secondary to sepsis is a leading cause of mortality in sepsis-related death. Present therapies are not effective in reversing endothelial cell dysfunction, which plays a key role in increased vascular permeability and compromised lung function. AMP-activated protein kinase (AMPK) is a molecular sensor important for detection and mediation of cellular adaptations to vascular disruptive stimuli. In this study, we sought to determine the role of AMPK in resolving increased endothelial permeability in the sepsis-injured lung. AMPK function was determined in vivo using a rat model of endotoxin-induced lung injury, ex vivo using the isolated lung, and in vitro using cultured rat pulmonary microvascular endothelial cells (PMVECs). AMPK stimulation using N1-(α-d-ribofuranosyl)-5-aminoimidizole-4-carboxamide or metformin decreased the LPS-induced increase in permeability, as determined by filtration coefficient ( Kf) measurements, and resolved edema as indicated by decreased wet-to-dry ratios. The role of AMPK in the endothelial response to LPS was determined by shRNA designed to decrease expression of the AMPK-α1 isoform in capillary endothelial cells. Permeability, wounding, and barrier resistance assays using PMVECs identified AMPK-α1 as the molecule responsible for the beneficial effects of AMPK in the lung. Our findings provide novel evidence for AMPK-α1 as a vascular repair mechanism important in the pulmonary response to sepsis and identify a role for metformin treatment in the management of capillary injury.


Nutrients ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1709 ◽  
Author(s):  
Maria Teresa Viggiani ◽  
Lorenzo Polimeno ◽  
Alfredo Di Leo ◽  
Michele Barone

Phytoestrogens are natural substances that have been extensively studied for their beneficial effect on human health. Herein, we analyzed the data of the literature on the role of phytoestrogens in the prevention of colorectal neoproliferative lesions (CNL). Both in vitro and in vivo studies suggest that the beneficial effects of phytoestrogens on CNL mainly depend on their ability to bind estrogen receptor beta (ERβ) in the intestinal mucosa and counter ER-alpha (ERα) activity. Epidemiological data demonstrate a correlation between the low prevalence of CNL in Eastern populations and the consumption of soy products (phytoestrogen-enriched diet). However, both observational and interventional studies have produced inconclusive results. In our opinion, these discrepancies depend on an inadequate evaluation of phytoestrogen intake (dietary questionnaires were not aimed at establishing phytoestrogen intake) and absorption (depending mainly on the intestinal microbiota of the analyzed subjects). For this reason, in the present review, we performed an overview of phytoestrogen dietary intake and metabolism to offer the reader the opportunity for a better interpretation of the literature. Future prospective trials focusing on the protective effect of phytoestrogens against CNL should take into account both their dietary intake and absorption, considering the effective role of the intestinal microbiota.


2011 ◽  
Vol 111 (1) ◽  
pp. 311-320 ◽  
Author(s):  
S. C. Newcomer ◽  
Dick H. J. Thijssen ◽  
D. J. Green

Physical activity, exercise training, and fitness are associated with decreased cardiovascular risk. In the context that a risk factor “gap” exists in the explanation for the beneficial effects of exercise on cardiovascular disease, it has recently been proposed that exercise generates hemodynamic stimuli which exert direct effects on the vasculature that are antiatherogenic. In this review we briefly introduce some of the in vitro and in vivo evidence relating exercise hemodynamic modulation and vascular adaptation. In vitro data clearly demonstrate the importance of shear stress as a potential mechanism underlying vascular adaptations associated with exercise. Supporting this is in vivo human data demonstrating that exercise-mediated shear stress induces localized impacts on arterial function and diameter. Emerging evidence suggests that exercise-related changes in hemodynamic stimuli other than shear stress may also be associated with arterial remodeling. Taken together, in vitro and in vivo data strongly imply that hemodynamic influences combine to orchestrate a response to exercise and training that regulates wall stress and peripheral vascular resistance and contributes to the antiatherogenic impacts of physical activity, fitness, and training.


2020 ◽  
Vol 2020 ◽  
pp. 1-14 ◽  
Author(s):  
Iwona Zwolak

Vanadium (V) in its inorganic forms is a toxic metal and a potent environmental and occupational pollutant and has been reported to induce toxic effects in animals and people. In vivo and in vitro data show that high levels of reactive oxygen species are often implicated in vanadium deleterious effects. Since many dietary (exogenous) antioxidants are known to upregulate the intrinsic antioxidant system and ameliorate oxidative stress-related disorders, this review evaluates their effectiveness in the treatment of vanadium-induced toxicity. Collected data, mostly from animal studies, suggest that dietary antioxidants including ascorbic acid, vitamin E, polyphenols, phytosterols, and extracts from medicinal plants can bring a beneficial effect in vanadium toxicity. These findings show potential preventive effects of dietary antioxidants on vanadium-induced oxidative stress, DNA damage, neurotoxicity, testicular toxicity, and kidney damage. The relevant mechanistic insights of these events are discussed. In summary, the results of studies on the role of dietary antioxidants in vanadium toxicology appear encouraging enough to merit further investigations.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Shengyang Qiu ◽  
Gianluca Pellino ◽  
Francesca Fiorentino ◽  
Shahnawaz Rasheed ◽  
Ara Darzi ◽  
...  

Neurotensin (NTS) is a physiologically occurring hormone which affects the function of the gastrointestinal (GI) tract. In recent years, NTS, acting through its cellular receptors (NTSR), has been implicated in the carcinogenesis of several cancers. In colorectal cancer (CRC), a significant body of evidence, from in vitro and in vivo studies, is available which elucidates the molecular biology of NTS/NTSR signalling and the resultant growth of CRC cells. There is growing clinical data from human studies which corroborate the role NTS/NTSR plays in the development of human CRC. Furthermore, blockade and modulation of the NTS/NTSR signalling pathways appears to reduce CRC growth in cell cultures and animal studies. Lastly, NTS/NTSR also shows potential of being utilised as a diagnostic biomarker for cancers as well as targets for functional imaging. We summarise the existing evidence and understanding of the role of NTS and its receptors in CRC.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
L. Pala ◽  
C. M. Rotella

The introduction of incretin hormone-based therapies represents a novel therapeutic strategy, since these drugs not only improve glycemia with minimal risk of hypoglycemia, but also have other extraglycemic beneficial effects. These agents, which are effective in improving glucose control, could also have positive effects on the incidence of cardiovascular events. The aim of this review is to summarize the present literature about the role of dipeptidyl peptidase 4 (DPP4) in cardiovascular districts, not only strictly correlated to its effect on glucagon-like peptide-1 (GLP-1) circulating levels, but also to what is known about possible cardiovascular actions. Actually, DPP4 is known to be present in many cells and tissues and its effects go beyond purely metabolic aspects. Almost always the inhibition of DPP4 activity is associated with improved cardiovascular profile, but it has shown to possess antithrombotic properties and these different effects could be connected with a site and/or species specificity of DPP4. Certainly, DPP4 seems to exert many functions, both directly and indirectly, on cardiovascular districts, opening new possibilities of prevention and treatment of complications at this level, not only in patients affected by diabetes mellitus.


Sign in / Sign up

Export Citation Format

Share Document