Puberty Onset in Males and Females Fed a High Fat Diet

1981 ◽  
Vol 166 (2) ◽  
pp. 294-296 ◽  
Author(s):  
J. A. Ramaley
2021 ◽  
Vol 12 ◽  
Author(s):  
Santiago Guerra-Cantera ◽  
Laura M. Frago ◽  
Roberto Collado-Pérez ◽  
Sandra Canelles ◽  
Purificación Ros ◽  
...  

Dietary intervention is a common tactic employed to curtail the current obesity epidemic. Changes in nutritional status alter metabolic hormones such as insulin or leptin, as well as the insulin-like growth factor (IGF) system, but little is known about restoration of these parameters after weight loss in obese subjects and if this differs between the sexes, especially regarding the IGF system. Here male and female mice received a high fat diet (HFD) or chow for 8 weeks, then half of the HFD mice were changed to chow (HFDCH) for 4 weeks. Both sexes gained weight (p < 0.001) and increased their energy intake (p < 0.001) and basal glycemia (p < 0.5) on the HFD, with these parameters normalizing after switching to chow but at different rates in males and females. In both sexes HFD decreased hypothalamic NPY and AgRP (p < 0.001) and increased POMC (p < 0.001) mRNA levels, with all normalizing in HFDCH mice, whereas the HFD-induced decrease in ObR did not normalize (p < 0.05). All HFD mice had abnormal glucose tolerance tests (p < 0.001), with males clearly more affected, that normalized when returned to chow. HFD increased insulin levels and HOMA index (p < 0.01) in both sexes, but only HFDCH males normalized this parameter. Returning to chow normalized the HFD-induced increase in circulating leptin (p < 0.001), total IGF1 (p < 0.001), IGF2 (p < 0.001, only in females) and IGFBP3 (p < 0.001), whereas free IGF1 levels remained elevated (p < 0.01). In males IGFBP2 decreased with HFD and normalized with chow (p < 0.001), with no changes in females. Although returning to a healthy diet improved of most metabolic parameters analyzed, fIGF1 levels remained elevated and hypothalamic ObR decreased in both sexes. Moreover, there was sex differences in both the response to HFD and the switch to chow including circulating levels of IGF2 and IGFBP2, factors previously reported to be involved in glucose metabolism. Indeed, glucose metabolism was also differentially modified in males and females, suggesting that these observations could be related.


2014 ◽  
Vol 111 (10) ◽  
pp. 1811-1821 ◽  
Author(s):  
Jyoti Gautam ◽  
Dharmendra Choudhary ◽  
Vikram Khedgikar ◽  
Priyanka Kushwaha ◽  
Ravi Shankar Singh ◽  
...  

The relationship between fat and bone mass at distinct trabecular and cortical skeletal compartments in a high-fat diet (HFD) model was studied. For this, C57BL/6 mice were assigned to four groups of eight animals each. Two groups, each of males and females, received a standard chow diet while the remaining other two groups received the HFD for a period of 10 weeks. Male mice on the HFD were heavier and gained more weight (15·8 %; P<  0·05) v. those on the control diet or when compared with the female rats fed the HFD. We observed an increased lipid profile in both males and females, with significantly higher lipid levels (about 20–25 %; P< 0·01) in males. However, glucose intolerance was more pronounced in females than males on the HFD (about 30 %; P< 0·05). The micro-architectural assessment of bones showed that compared with female mice on the HFD, male mice on the HFD showed more deterioration at the trabecular region. This was corroborated by plasma osteocalcin and carboxy-terminal collagen crosslinks (CTx) levels confirming greater loss in males (about 20 %; P< 0·01). In both sexes cortical bone parameters and strength remained unchanged after 10 weeks of HFD treatment. The direct effect of the HFD on bone at the messenger RNA level in progenitor cells isolated from femoral bone marrow was a significantly increased expression of adipogenic marker genes v. osteogenic genes. Overall, the present data indicate that obesity induced by a HFD aggravates bone loss in the cancellous bone compartment, with a greater loss in males than females, although 10 weeks of HFD treatment did not alter cortical bone mass and strength in both males and females.


2007 ◽  
Vol 293 (3) ◽  
pp. H1553-H1563 ◽  
Author(s):  
Yan Yang ◽  
Allan W. Jones ◽  
Tom R. Thomas ◽  
Leona J. Rubin

Potassium channels in vascular smooth muscle (VSM) control vasodilation and are potential regulatory targets. This study evaluated effects of sex differences, exercise training (EX), and high-fat diet (HF) on K+ currents ( IK) of coronary VSM cells. Yucatan male and female swine were assigned to either sedentary confinement (SED), 16 wk of EX, 20 wk of HF, or 20 wk of HF with 16 wk of EX (HF-EX). VSM cells of normal-diet SED animals exhibited three components of IK: 4-aminopyridine-sensitive IK(KV), TEA-sensitive IK(BK), and 4-aminopyridine + TEA-insensitive IK. Females exhibited significantly higher basal IK than males in the same group. EX increased basal IK in males and females. HF reduced IK in males and females and nullified effects of EX. Endothelin-1 increased IK significantly in males but not in females. In the presence of endothelin-1, 1) IK(KV) was similar in SED males and females and EX increased IK(KV) to a greater extent in males than in females and 2) IK(BK) was greater in SED females than in males and EX increased IK(BK) to a greater extent in males, resulting in IK(BK) similar to EX females. Importantly, HF nullified effects of EX on IK(KV) and IK(BK). These data indicate that basal IK of SED female swine is inherently greater than that shown in SED males and that males require EX to achieve comparable levels of IK. Importantly, HF reduced IK in males and females and nullified effects of EX, suggesting HF abrogates beneficial effects of EX on coronary smooth muscle.


Antioxidants ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 174 ◽  
Author(s):  
Marija Pinterić ◽  
Iva I. Podgorski ◽  
Marijana Popović Hadžija ◽  
Ivana Tartaro Bujak ◽  
Ana Dekanić ◽  
...  

Metabolic homeostasis is differently regulated in males and females. Little is known about the mitochondrial Sirtuin 3 (Sirt3) protein in the context of sex-related differences in the development of metabolic dysregulation. To test our hypothesis that the role of Sirt3 in response to a high-fat diet (HFD) is sex-related, we measured metabolic, antioxidative, and mitochondrial parameters in the liver of Sirt3 wild-type (WT) and knockout (KO) mice of both sexes fed with a standard or HFD for ten weeks. We found that the combined effect of Sirt3 and an HFD was evident in more parameters in males (lipid content, glucose uptake, pparγ, cyp2e1, cyp4a14, Nrf2, MnSOD activity) than in females (protein damage and mitochondrial respiration), pointing towards a higher reliance of males on the effect of Sirt3 against HFD-induced metabolic dysregulation. The male-specific effects of an HFD also include reduced Sirt3 expression in WT and alleviated lipid accumulation and reduced glucose uptake in KO mice. In females, with a generally higher expression of genes involved in lipid homeostasis, either the HFD or Sirt3 depletion compromised mitochondrial respiration and increased protein oxidative damage. This work presents new insights into sex-related differences in the various physiological parameters with respect to nutritive excess and Sirt3.


2007 ◽  
Vol 98 (6) ◽  
pp. 1159-1169 ◽  
Author(s):  
Vanessa Souza-Mello ◽  
Carlos A. Mandarim-de-Lacerda ◽  
Márcia B. Aguila

The present study aimed to evaluate the effects of a post-weaning high-fat (HF) diet upon hepatic morphology in rats subjected to perinatal protein restriction. Pregnant Wistar rats were assigned to a normal-protein diet (NP; with 19 % of protein) or a low-protein (LP) diet (with 5 % of protein). At weaning, the following groups were formed: NP and NP-HF, males and females, which were fed standard chow and an HF diet, respectively. Likewise, LP rat dams originated LP and LP-HF offspring, both sexes. Euthanasia was performed at 6 months of age. Three-way ANOVA disclosed a three-factor interaction among sex, perinatal diet and HF diet in relation to body mass, retroperitoneal fat pad, liver mass:tibia length ratio, binucleation rate and hepatocyte area at 6 months old (P < 0·05). The high-fat diet intensified the effects of perinatal protein restriction concerning systolic blood pressure, genital fat pad and hepatocyte number (P < 0·05; two-way ANOVA). Furthermore, higher steatosis rates and insulin and leptin concentrations were found in males fed on the HF diet, indicating a sex–post-weaning diet interaction (P < 0·05; two-way ANOVA). Fetal programming and HF diet as a single stimulus caused mild hypertension at 3 months, an important reduction in hepatocyte number as well as stage 1 steatosis at 6 months. However, hypertension and hepatocyte number deficit were worsened and grade 2 steatosis occurred after exposure to the HF diet. All of these serve to highlight the paramount importance of intra-uterine conditions and postnatal diet quality when it comes to the pathogenesis of chronic diseases.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Elizabeth M. Rhea ◽  
Kim Hansen ◽  
Sarah Pemberton ◽  
Eileen Ruth S. Torres ◽  
Sarah Holden ◽  
...  

AbstractAge, apolipoprotein E (apoE) isoform, sex, and diet can independently affect the risk for the development of Alzheimer’s disease (AD). Additionally, synergy between some of these risk factors have been observed. However, the relation between the latter three risk factors has not been investigated. Central nervous system (CNS) insulin resistance is commonly involved in each of these risk factors. CNS insulin is primarily derived from the periphery in which insulin must be transported across the blood–brain barrier (BBB). Additionally, insulin can bind the brain endothelial cell to affect intracellular signaling. Therefore, we hypothesized CNS access to insulin could be affected by the combination of apoE isoform, sex, and diet. We analyzed insulin BBB pharmacokinetics in aged apoE targeted replacement (E3 and E4) male and female mice on a low-fat and high-fat diet. There were differences within males and females due to apoE genotype and diet in insulin interactions at the BBB. These sex-, diet-, and apoE isoform-dependent differences could contribute to the cognitive changes observed due to altered CNS insulin signaling.


2019 ◽  
Vol 89 (1-2) ◽  
pp. 45-54
Author(s):  
Akemi Suzuki ◽  
André Manoel Correia-Santos ◽  
Gabriela Câmara Vicente ◽  
Luiz Guillermo Coca Velarde ◽  
Gilson Teles Boaventura

Abstract. Objective: This study aimed to evaluate the effect of maternal consumption of flaxseed flour and oil on serum concentrations of glucose, insulin, and thyroid hormones of the adult female offspring of diabetic rats. Methods: Wistar rats were induced to diabetes by a high-fat diet (60%) and streptozotocin (35 mg/kg). Rats were mated and once pregnancy was confirmed, were divided into the following groups: Control Group (CG): casein-based diet; High-fat Group (HG): high-fat diet (49%); High-fat Flaxseed Group (HFG): high-fat diet supplemented with 25% flaxseed flour; High-fat Flaxseed Oil group (HOG): high-fat diet, where soya oil was replaced with flaxseed oil. After weaning, female pups (n = 6) from each group were separated, received a commercial rat diet and were sacrificed after 180 days. Serum insulin concentrations were determined by ELISA, the levels of triiodothyronine (T3), thyroxine (T4) and thyroid-stimulating hormone (TSH) were determined by chemiluminescence. Results: There was a significant reduction in body weight at weaning in HG (−31%), HFG (−33%) and HOG (44%) compared to CG (p = 0.002), which became similar by the end of 180 days. Blood glucose levels were reduced in HFG (−10%, p = 0.044) when compared to CG, and there was no significant difference between groups in relation to insulin, T3, T4, and TSH after 180 days. Conclusions: Maternal severe hyperglycemia during pregnancy and lactation resulted in a microsomal offspring. Maternal consumption of flaxseed reduces blood glucose levels in adult offspring without significant effects on insulin levels and thyroid hormones.


Sign in / Sign up

Export Citation Format

Share Document