scholarly journals Probiotics as regulators of inflammation: A review

2014 ◽  
Vol 4 (7) ◽  
pp. 299 ◽  
Author(s):  
David W. Lescheid

A substantial and increasing body of clinical evidence supports the role of specific strains and mixtures of probiotics in the prevention and treatment of certain diseases. Several general mechanisms of action have been proposed, including supporting repair of hyperpermeable epithelial barriers, interfering with infection by pathogens, and restoring a healthful balance of commensal microbes to affect metabolism. Emerging evidence supports an additional role of probiotics as important modulators of immune system responses, including inflammation, at mucosal surfaces. In particular, by preventing or repairing ‘leaky’ epithelial barriers, probiotics can indirectly affect the inflammatory response by negating the source of pro-inflammatory stimuli associated with low-grade endotoxemia. They also enhance production of short chain fatty acids with anti-inflammatory properties (e.g. butyrate) as well as increase synthesis of antimicrobial peptides that influence inflammation resolution pathways in the mucosa. Furthermore, probiotics and some of their secreted metabolic products can act as ligands for innate immune system receptors, directly influencing key pro-inflammatory pathways. They also stimulate the differentiation and activity of important immune cells (e.g., dendritic cells, T cells), and subsequently increase production of important regulatory cytokines, including interleukin-10 (IL-10) and transforming growth factor-beta (TGF-b). Finally, there are limited but increasing animal studies and clinical trials demonstrating probiotics do affect common biomarkers of inflammation, including C-reactive protein, as well as signs and symptoms of the associated diseases suggesting they can have therapeutic benefit in the treatment of chronic inflammatory disease.Keywords: probiotics, inflammation, endotoxemia, epithelial, cytokines, immune, butyrate, antimicrobial peptides

Author(s):  
Jayarami Reddy Medapati ◽  
Deepthi Rapaka ◽  
Veera Raghavulu Bitra ◽  
Santhosh Kumar Ranajit ◽  
Girija Sankar Guntuku ◽  
...  

Abstract Background The endocannabinoid CB1 receptor is known to have protective effects in kidney disease. The aim of the present study is to evaluate the potential agonistic and antagonistic actions and to determine the renoprotective potential of CB1 receptors in diabetic nephropathy. The present work investigates the possible role of CB1 receptors in the pathogenesis of diabetes-induced nephropathy. Streptozotocin (STZ) (55 mg/kg, i.p., once) is administered to uninephrectomised rats for induction of experimental diabetes mellitus. The CB1 agonist (oleamide) and CB1 antagonist (AM6545) treatment were initiated in diabetic rats after 1 week of STZ administration and were given for 24 weeks. Results The progress in diabetic nephropathy is estimated biochemically by measuring serum creatinine (1.28±0.03) (p < 0.005), blood urea nitrogen (67.6± 2.10) (p < 0.001), urinary microprotein (74.62± 3.47) (p < 0.005) and urinary albuminuria (28.31±1.17) (p < 0.0001). Renal inflammation was assessed by estimating serum levels of tumor necrosis factor alpha (75.69±1.51) (p < 0.001) and transforming growth factor beta (8.73±0.31) (p < 0.001). Renal morphological changes were assessed by estimating renal hypertrophy (7.38± 0.26) (p < 0.005) and renal collagen content (10.42± 0.48) (p < 0.001). Conclusions From the above findings, it can be said that diabetes-induced nephropathy may be associated with overexpression of CB1 receptors and blockade of CB1 receptors might be beneficial in ameliorating the diabetes-induced nephropathy. Graphical abstract


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Yan He ◽  
Hongyan Qian ◽  
Yuan Liu ◽  
Lihua Duan ◽  
Yan Li ◽  
...  

Regulatory B cells (Bregs), a newly described subset of B cells, have been proved to play a suppressive role in immune system. Bregs can inhibit other immune cells through cytokines secretion and antigen presentation, which give them the role in the pathogenesis of autoimmune diseases and cancers. There are no clear criteria to identify Bregs; different markers were used in the different experimental conditions. Massive researches had described the functions of immune cells such as regulatory T cells (Tregs), dendritic cells (DCs), and B cells in the autoimmune disorder diseases and cancers. More and more researches focused on the roles of Bregs and the cytokines such as Interleukin-10 (IL-10) and transforming growth factor beta (TGF-β) secreted by Bregs. The aim of this review is to summarize the characteristics of Bregs and the roles of Bregs in cancer.


2010 ◽  
Vol 10 ◽  
pp. 2367-2384 ◽  
Author(s):  
Eduardo Pérez-Gómez ◽  
Gaelle del Castillo ◽  
Juan Francisco Santibáñez ◽  
Jose Miguel Lêpez-Novoa ◽  
Carmelo Bernabéu ◽  
...  

Endoglin (CD105) is an auxiliary membrane receptor of transforming growth factor beta (TGF-β) that interacts with type I and type II TGF-β receptors and modulates TGF-β signaling. Endoglin is overexpressed in the tumor-associated vascular endothelium, where it modulates angiogenesis. This feature makes endoglin a promising target for antiangiogenic cancer therapy. In addition, recent studies on human and experimental models of carcinogenesis point to an important tumor cell–autonomous role of endoglin by regulating proliferation, migration, invasion, and metastasis. These studies suggest that endoglin behaves as a suppressor of malignancy in experimental and human epithelial carcinogenesis, although it can also promote metastasis in other types of cancer. In this review, we evaluate the implication of endoglin in tumor development underlying studies developed in our laboratories in recent years.


Sign in / Sign up

Export Citation Format

Share Document