Application of Sewage Sludge and Its Impact on Soil Characteristics, Including Morphological and Biochemical Properties of Vigna radiata Plant

2021 ◽  
Vol 18 (4) ◽  
pp. 141-146
Author(s):  
Basim Y. Alkhafaji ◽  
Roaa Jafar Elkheralla ◽  
Ahmed Salman Abdulhasan

This experiment was conducted in pots to study the effects of sewage sludge application on some morphological, physiological and accumulation characters of Vigna radiata. The experiment contained the following treatments: control (C) 0 gm sludge/30 kg soil, (T1) 300 gm sludge/30 kg soil, (T2) 600 gm sludge/30 kg soil and (T3) 900 gm sludge/30 kg soil. All sludge treatments showed a significant increase in all morphological, physiological and accumulation characters compared with control. (T2 ) treatment gave a significant increase as compared to other treatments in all morphological characters (height of the plant, leaf area, and total dry weight for shoots and roots). It increased by 34.1 cm, 33.1 cm2, 29.8 gm and 3.3 gm, respectively, compared with the control. T2 treatment also gave significant values in all physiological characters (chlorophyll and protein content) as compared to other treatments and the control treatment, (2.60 μg/gm and 17.7%) respectively compared with the control. T3 treatment showed a higher accumulation of Cd and Pb in all plant parts, the root system showed greater susceptibility to bioaccumulation than the shoot system for both the heavy metals.

1985 ◽  
Vol 105 (3) ◽  
pp. 527-534 ◽  
Author(s):  
Sheila Bhattacharya ◽  
N. C. Bhattacharya ◽  
P. K. Biswas ◽  
B. R. Strain

SUMMARYThis study examines the effects of increased atmospheric carbon dioxide concentrations on vegetative and reproductive growth and partitioning of biomass during pod and seed development of cow pea in controlled environment chambers at 350, 675, and 1000μl CO2/l.The length of main stem and branches, the number of leaves and branches, and leaf area were all greater at high CO2 than at low CO2 concentration. The appearance of flowers was 10–12 days earlier in high CO2 than in ambient CO2 atmosphere. The senescence of leaves started about 7 days earlier in plants grown at 675 and 1000 μl CO2/l than in those grown at 350 μl CO2/l. The rate of leaf senescence was more rapid in 1000 μl/l than in 675 μl CO2/l. The dry weight of roots, stems and leaves increased with CO2 enrichment, being greater in 675 μl/l than in 1000 μl CO2/l. Plants grown in 675 and 1000 μ1/1 produced more pods and seeds than in 350 μl CO2/l. Total seed weight and number of pods, as well as number of seeds per pod, were significantly greater in CO2 enriched atmosphere than ambient CO2 level. Although CO2 enrichment caused a significant increase in the total number and weight of seeds as well as pods, it did not affect the ratio of seed dry weight to the total dry weight of above-ground plant parts (harvest index). It is concluded from the present investigation that CO2 enrichment significantly enhanced vegetative as well as reproductive growth resulting in the increase in yield and early plant maturation in this leguminous crop.


Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2734
Author(s):  
Muhammad Umair Riaz ◽  
Muhammad Ali Raza ◽  
Amjad Saeed ◽  
Mukhtar Ahmed ◽  
Tanveer Hussain

Genus Ziziphus (Z.) contains various important species in tropical and subtropical regions that are globally famous for their food and medicinal uses. However, no comprehensive study was available on the morphology and phytochemistry of Ziziphus species, mainly under different growth conditions, i.e., irrigated and desert (Cholistan). Therefore, this study was carried out to evaluate the morphological and phytochemical characteristics of Ziziphus species, i.e., Z. jujuba, Z. mauritiana, Z. spina-christi, and Z. nummularia, found in the irrigated and desert conditions. Our results revealed significant variations for most of the measured parameters, showing a large-scale diversity among Ziziphus species under irrigated and desert conditions. Specifically, Ziziphus species showed better morphology of all measured parameters of leaves and fruits under irrigated conditions compared to desert conditions, indicating that the optimum water availability in irrigated conditions improved the morphological parameters of Z. species. Meanwhile, among all Ziziphus species, the maximum leaf length (7.4 cm), leaf width (4.1 cm), leaf area (30.6 cm2), and leaf petiole length (1.3 cm) were observed for Z. jujuba, and the highest leaf dry weight (55.4%) was recorded for Z. mauritiana. Similarly, the highest fruit length (3.9 cm), fruit stalk length (1.5 cm), fruit diameter (3.6 cm), fruit width (3.8 cm), fruit area (66.1 cm2), seed length (2 cm), and seed diameter (1.1 cm) were measured for species Z. jujuba, while the maximum fruit dry weight (49.9%) and seed width (1.4 cm) were recorded for species Z. nummularia. Interestingly, compared to irrigated conditions, higher values of bioactive contents, i.e., phenol, flavonoid, and antioxidant activity, in fruits and leaves of Ziziphus species under desert conditions indicated the positive impact of desert climate on the phytochemistry of the Z. plants. Among Ziziphus species, Z. nummularia accumulated the maximum fruit phenols (304.4 mg GAE/100 g), leaf phenols (314.2 mg GAE/100 g), fruit flavonoids (123.7 mg QE/100 g), and leaf flavonoids (113.4 mg QE/100 g). Overall, this study demonstrated the significant morphological and phytochemical variations of the Ziziphus species under irrigated and desert conditions, which could be utilized for future studies to improve the production and medicinal potential of the Ziziphus, especially in desert areas.


1954 ◽  
Vol 5 (3) ◽  
pp. 356 ◽  
Author(s):  
WM Hutton ◽  
JW Peak

Induced autotetraploidy in the Dwalganup variety of subterranean clover (Trifolium subterraneum L.) resulted in total dry weight increases of 60 and 65.5 per cent. at flowering and maturity respectively. In the other four varieties the tetraploids had decreased yields of dry matter compared with the diploids, although the decreases for leaf weights at flowering were nonsignificant in Mount Barker and Tallarook, as was the total dry weight reduction in Tallarook at maturity. There were no significant differences between the diploids and tetraploids in percentage moisture content. When early development was stimulated by growth in a glass-house, the tetraploids of all varieties showed a significant increase in yield of green matter. The level of increased growth was maintained only in Dwalganup, and decreased in other varieties during flowering. An analysis was made of the way in which the different plant parts mere changed by tetraploidy. Where decreased growth occurred, the leaves and stems were coarser. In all varieties a reduced seed-setting followed autotetraploidy, although in Dwalganup the yield of seed per plant was not affected.


2021 ◽  
Vol 9 (2) ◽  
pp. 159-168
Author(s):  
Vahid Reza Saffari ◽  
◽  
Mahboub Saffari ◽  

Background: Using ornamental plants for phytoremediation of Heavy Metals (HMs) in soil environments has been grown due to its cost-effectiveness and ease of use in urban environments. The aim of this study was to assess the potential use of Calendula officinalis for soil Copper (Cu) phytoremediation in the presence of different types of chelating agents (Ethylene Diamine Tetra-Acetic Acid (EDTA), Citric acid (CIT), and Tartaric Acids (TAR)) at different levels of Cu in a calcareous soil. Methods: To investigate the effects of stress caused by the use of chelating agents on biochemical changes of C. officinalis, the activity of some antioxidants of C. officinalis (Superoxide Dismutase (SOD), Catalase (CAT), Ascorbate Peroxidase (APX), Peroxidase (POD), and Polyphenol Oxidase (PPO)) was evaluated. Results: As results, C. officinalis showed an increase in shoot and root Cu concentration in the presence of all chelating agents compared to the control. The highest accumulation of Cu in the root/shoot was observed in EDTA-treated plants. However, an increased Cu level in plant parts (due to consuming of EDTA) was corresponded to lower dry weight in shoot and root; higher H2O2 and malondialdehyde (MDA) contents, and antioxidant activity (APX, PPO, CAT, SOD, and POD) in plants compared to the control treatment. On the contrary, the application of CIT and TAR primarily increased shoot and root dry weight and Cu concentration. Conclusion: Generally, the results of this study could be suggested that plants possess a well-organized resistance mechanism against oxidative stress caused by using of CIT and TAR.


Author(s):  
AG Sficas ◽  
IC Antoniou

AbstractGrowth and development of seven Oriental tobacco cultivars, representing aromatic, neutral and taste type tobacco grown in Greece, were studied at Drama, Greece, during 1982 and 1983. The growing period from transplanting to flowering ranged from 65 to 80 days and was the same for both years. plant height increase followed a sigmoid curve, the number of harvestable leaves developed almost linearly with time, and total dry weight production and leaf area increase can be described by a logarithmic curve. The effect of year on all parameters was significant, but cultivar differences were consistent. Assimilation rates during the whole period ranged from 0.1 g to 3.0 g per day per plant in 1982, and from 0.1 g to 2.7 g in 1983. Dry weight distribution in the plant parts and final yield production for the cultivars tested were also recorded.


HortScience ◽  
1997 ◽  
Vol 32 (3) ◽  
pp. 503A-503
Author(s):  
Wayne J. McLaurin ◽  
Stanley J. Kays

Jerusalem artichokes are one of a small number of crops that store carbon predominately in the form of inulin, a straight chain fructosan. There has been a tremendous increase in interest in inulin due to its dietary health benefits for humans and calorie replacement potential in processed foods. We measured the allocation of dry matter within the crop (cv. Sunckoke) during an entire growth cycle by harvesting plants over a 40-week period (2-week intervals) from initial planting through field storage. Plant characters assessed were: no. of basal stems, leaves, branches, flowers, and tubers; the dry weight of leaves, branches, flowers, tubers, and fibrous roots; and date of flowering. Total dry weight of above-ground plant parts increased until 18 weeks after planting (22 Aug.) and then progressively decreased thereafter. Tuber dry weight began to increase rapidly ≈4 weeks (19 Sept.) after the peak in above-ground dry weight, suggesting that dry matter within the aerial portion of the plant was being recycled into the storage organs. Tuber dry weight continued to increase during the latter part of the growing season, even after the first frost. Final tuber yield was 13.6 MT of dry matter/ha.


1956 ◽  
Vol 7 (6) ◽  
pp. 495 ◽  
Author(s):  
DS Riceman ◽  
GB Jones

Changes in the distribution of zinc, copper, and dry matter in seedlings of Trifolium subterraneum L. var. Bacchus Marsh grown in solution cultures which were supplied with copper but not with zinc have been traced during the first 40 days after germination. Increase in total dry weight was accompanied by a rapid decline in the concentration of zinc in the plant parts examined. Symptoms of zinc deficiency were recognizable in the third trifoliate leaf by the time the leaflets opened, 33 days after germination. At that time the concentration of zinc in leaf plus petiole had fallen to 14 p.p.m. in the dry matter. There was a continual net loss of zinc from the cotyledons. A marked increase in the amount of copper present in roots, and in leaf plus petiole, occurred soon after the addition of copper to the cultures 20 days after germination, but no substantial change was observed in the amount of copper present in the cotyledons or in the hypocotyl plus growing point. These latter tissues had previously lost small amounts of copper.


2020 ◽  
Vol 80 (1) ◽  
Author(s):  
Parisa Sheikhzadeh ◽  
Nasser Zare ◽  
Fatemeh Mahmoudi

In this research, the effect of priming with water for 24 hours and hormone-priming with different concentration of Gibberellic acid (GA3) (50, 100, 150 mg L-1) for 24 hours and hydro and hormone priming techniques either alone or in combination on germination, growth and biochemical properties of borage seedlings under cadmium stress conditions were investigated. The results showed that cadmium stress reduces seed germination and seedlings growth indices. Seed priming led to the significant increase in the germination percentage and rate, seedling dry weight and length, seedling vigor indices, and as well as the catalase and peroxidase activity of borage seedlings under both cadmium stress and non-stress conditions. Among the priming treatments, the combination of hydro and hormone priming showed the highest effects on the improvement of germination and seedling growth under cadmium conditions, which was significantly higher than those of the individual use of the hydro or hormone priming. At all levels of cadmium stress utilization of the combined hydro and hormone priming led to the 0.9 to 11.53-fold, and 0.95 to 2.63-fold increase in the seedlings dry weight compared with the control treatment and individual use of hydro or hormone priming, respectively. The highest activity of catalase and peroxidase enzymes in borage seedling was obtained from the seeds primed with the combination of hydro priming with 150 mg L-1 GA3, which was significantly higher than those of the other treatments. Generally, at all levels of cadmium stress, the combined hydro and hormone (specially 150 mg L-1 GA3) priming had the most positive effects on seed germination, growth and biochemical properties of borage seedlings.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Genhua Niu ◽  
Denise Rodriguez ◽  
Mike Mendoza ◽  
John Jifon ◽  
Girisha Ganjegunte

Two greenhouse experiments were conducted to quantify growth responses ofJatropha curcasto a range of salt and drought stresses. Typical symptoms of salinity stress such as leaf edge yellowing were observed in all elevated salinity treatments and the degree of the foliar salt damage increased with the salinity of irrigation water. Total dry weight (DW) of Jatropha plants was reduced by 30%, 30%, and 50%, respectively, when irrigated with saline solutions at electrical conductivity of 3.0, 6.0, and 9.0 dSm−1compared to that in the control. LeafNa+concentration was much higher than that observed in most glycophytes. LeafCl−concentrations were also high. In the drought stress experiment, plants were irrigated daily with nutrient solution at 100%, 70%, 50%, or 30% daily water use (DWU). Deficit irrigation reduced plant growth and leaf development. The DW of leaves, roots, and total were reduced in the 70%, 50%, and 30% DWU compared to the 100% DWU control treatment. In summary, salinity stress and deficit irrigation significantly reduced the growth and leaf development of greenhouse-grown Jatropha plants.


Agronomy ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 945
Author(s):  
Pedro García-Caparrós ◽  
Francisco Sabio ◽  
Francisco Javier Barbero ◽  
Rosa María Chica ◽  
María Teresa Lao

Tomato and cucumber seedlings were grown in a growth chamber to evaluate the effects of different cycles of light–dark exposure conditions (T0 (control treatment) (1 cycle of 24 h distributed in 18 h of light exposure and six hours of dark), T1 (two cycles of 12 h distributed in nine hours of light exposure and three hours of dark) and T2 (three cycles of eight hours distributed in six hours of light exposure and two hours of dark) on growth, nutrient status, pigment concentration and physiological changes. Total dry weight showed different behaviors in both species, since in tomato the total dry weight remained unchanged under varying light–dark cycles, whereas in cucumber seedlings there was a clear decrease compared to the control treatment. In both species, plants grown under T2 showed the best water content. Nitrogen, P and K content—as well as partitioning in the different organs of the plants—displayed different patterns under varying cycles of light–dark conditions in both species. Chlorophyll (b and a + b) concentration decreased significantly in both species in T1 and T2 compared to the control treatment (T0). At physiological level, the concentration of total soluble sugars and proline in leaf showed the highest value in the control treatment with 18 h of light and six hours of dark.


Sign in / Sign up

Export Citation Format

Share Document