scholarly journals Simulation of Deformation Transfer Coefficient of Pipe Bend Buried Based on Shaking Table Test and Goodman Contact Element

2021 ◽  
Author(s):  
Delong Huang ◽  
XiaoDong Bai ◽  
Xiaoli Chen ◽  
Guanyu Xu ◽  
Aiping Tang

Due to the large difference of stiffness between pipe and soil, the movement of the two can not be coordinated under seismic. Therefore, the deformation transfer between pipe and soil is a very important research content in the study of pipe failure. At present, scholars have done less research on the pipe-soil deformation transfer of elbow. In this paper, the fitting formula of deformation transfer coefficient of buried elbow under seismic action was obtained by scale shaking table test of pipe bend and 3D finite element model based on Goodman contact element. Then, the test results are compared with the calculation results of the fitting formula and the simulation results of the finite element method to verify the rationality of the fitting formula and analyze the change law of the deformation transfer coefficient at the elbow of the pipe, including the influence of different pipe diameters, buried depth, wall thickness, soil properties, and elbow angles. It is confirmed that these factors have a great influence on the deformation transfer between the pipe and soil, which indicates that the fitting formula of the deformation transfer coefficient at the elbow is of huge significance to the earthquake resisting design of pipe.

2016 ◽  
Vol 2016 ◽  
pp. 1-13
Author(s):  
Tianbo Peng ◽  
Ning Guo

The pounding issue between decks in the earthquake has been a great concern of many researchers, but the research on the deck-pier pounding issue was inadequate. In this paper, a simplified SDOF method was proposed to study the issue for simply supported girder bridges. Theoretical analysis, shaking table test, and finite element analysis were conducted to study the applicability of the simplified SDOF method in longitudinal deck-pier poundings. A whole structural model and a SDOF model for the longitudinal pounding issue were also established to study influences of the pier stiffness and the pier mass on longitudinal pounding responses. It is shown that the simplified SDOF method can estimate the pounding force and deck displacement fairly accurately for almost all cases. The pier mass has little effect on pounding responses except for bridges with very rigid piers, but the pier stiffness has a great influence. The larger the pier stiffness is, the higher the peak pounding force is.


2011 ◽  
Vol 261-263 ◽  
pp. 1619-1624
Author(s):  
Pei Zhen Li ◽  
Jing Meng ◽  
Peng Zhao ◽  
Xi Lin Lu

Shaking table test on soil-structure interaction system in harder site condition is presented briefly in this paper. Three-dimensional finite element analysis on shaking table test is carried out using ANSYS program. The surface-to-surface contact element is taken into consideration for the nonlinearity of the state of the interface of the soil-pile and an equivalent linear model is used for soil behavior. By comparing the results of the finite element analysis with the data from shaking table tests, the computational model is validated. Based on the calculation results, the paper gives the seismic responses under the consideration of soil-structure interaction in harder site condition, including acceleration response, contact analysis on soil pile interface and so on.


Author(s):  
C. S. Tsai ◽  
Wen-Shin Chen ◽  
Yung-Chang Lin ◽  
Chi-Lu Lin

In order to prevent a building near a fault from earthquake damage, in this study an advanced base isolation system called the multiple direction optimized-friction pendulum system (Multiple DO-FPS or MDO-FPS) is proposed and examined to address its mechanical behavior through the finite element formulation and evaluate its efficiency in seismic mitigation through a series of shaking table tests. On the basis of the finite element formulation, it is revealed that the natural period, the capacity of the bearing displacement and damping effect for the Multiple Direction Optimized-Friction Pendulum System (Multiple DO-FPS) change continually during earthquakes. Therefore, the MDO-FPS isolator can avoid possibility of resonance of enriched frequencies from ground motions and provide an efficient capacity of the bearing displacement and damping during the earthquakes. Simultaneously, the shaking table test results also illustrate that the Multiple DO-FPS isolator possesses an outstanding seismic mitigation capabilities.


2014 ◽  
Vol 1049-1050 ◽  
pp. 464-468
Author(s):  
Chen Hui Jin ◽  
Bo Ming Zhao ◽  
Run Bo Bai

In the study of bridge pier’s dynamic characteristics, the modal analysis is the foundation of other dynamic analysis and is of great significance for studying other dynamic performance. Based on the dynamic theory of fluid-solid interface coupling, a 3D water-structure coupling finite element modal is established and computed by ANSYS. To verify the validity of the calculation results, the results of finite element software is compared with the analytical solutions in reference books. The analysis indicated that the results of finite element software are reasonable when the radius of bridge pier is five times the radius of water body. The ratio of water depth and the bridge pier’s height has a great influence on the change scale of bridge pier’s frequency. With the increase of bridge pier’s height-diameter ratio, the first three order natural vibration frequency is reduced.


2019 ◽  
Vol 815 ◽  
pp. 223-228
Author(s):  
Qin Tian ◽  
Cheng Hao Hang ◽  
Yun Peng Zou ◽  
Zi Xin Wan

In order to improve the mechanical behaviour of bridge steel hoops, the plate shell finite element models of several steel hoops were established by using the general finite element software ABAQUS. Through changing the structural parameters of the stiffening plates, the influence of the stiffening plates on the mechanical properties of the steel hoops was explored. The calculation results show that the stress distribution at both ends of the steel hoop is uneven and there is a phenomenon of stress concentration. The spacing of stiffening plates has great influence on the mechanical properties of steel hoop. Some measures to improve the mechanical properties of steel hoop are given.


1999 ◽  
Vol 26 (6) ◽  
pp. 746-759 ◽  
Author(s):  
Xilin Lu ◽  
Huiyun Zhang ◽  
Zhili Hu ◽  
Wensheng Lu

In this paper, the dynamic response of a very complex structure which has U-shaped floors and specially shaped slant columns is described. Shaking table tests of a scale model of the building were carried out to verify the safety of the structure and to confirm the results of a finite element analysis of the building. The elastic finite element analysis was done with the help of Super-SAP 93, a well-known structural analysis program. From the shaking table test and the finite element analysis, the dynamic characteristics of the building and its maximum responses were evaluated. In the elastic region, the analytical results were in good agreement with the test results. At the end of this paper, some suggestions are given for engineering design of this type of structures.Key words: shaking table test, structural model, slant column, U-shaped plan, finite element analysis, seismic response.


2013 ◽  
Vol 368-370 ◽  
pp. 1547-1550
Author(s):  
Wei Wu ◽  
Jing Ji

Combined with practical experience a kind of new horizontal storage tank with separate plate was put forward. In view of the lack of experience in the design of the new tank and limitations of carrying out shaking table test for full scale horizontal storage tank, the pseudo-dynamic analysis of separate plate substructure with 5m diameter is done by using ANSYS finite element software combined with the actual engineering. The fluid loads action and mechanical model were simplified, and elastic-plastic mechanical properties of separate plate substructure under the cyclic loading actions were investigated, then deformation and stress distribution of separate plate were obtained. The design thickness for separate plate which in the horizontal storage tank is verified by finite element analysis and the horizontal tank construction methods is given. These can provide technical support to improve the practical design of large horizontal storage tank.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Hui Yang ◽  
Wang Zhou ◽  
Chan Liu ◽  
Xueliang Jiang ◽  
Lei Yu

Based on the similarity theory, a large-scale shaking table test of a shallow double-arch tunnel under unsymmetrical pressure with a similarity ratio of 1 : 20 was designed and completed, and a foam concrete damping layer was set in the double-arch tunnel. The acceleration response, strain response, and crack distribution of double-arch tunnels under different intensities and different directions of the Wenchuan wave excitation were studied (WC-X, WC-Z, and WC-XZ). The results showed that (1) the bias side (right hole) is greatly affected by the unevenness of the cover soil, and the horizontal acceleration response difference between the two tunnels is large and there is no symmetry. The incident direction of seismic waves has a great influence on the acceleration response of double-arch tunnels. The amplification factor of WC-Z is greater than that of WC-X. (2) On the same horizontal plane, with the vertical centerline of the middle wall as the axis of symmetry, the vertical acceleration amplification factor also has a large difference between the arch foot and the shoulder, but the difference is relatively small at other points. (3) The dynamic strain increases with the increase of seismic intensity, and the tendency is similar under the three different seismic wave excitation directions. The lining is under tensile strain and compressive strain, the strain of the left hole is greater than the strain of the right hole, and severe stress concentration occurs at the top left of the mid partition. (4) The middle partition, shoulder, and vault of the left hole and the shoulder, vault, and foot of the right hole are weak parts of earthquake resistance. Therefore, special attention should be paid to the seismic design.


Sign in / Sign up

Export Citation Format

Share Document