Functional cooperation between two otoconial proteins Oc90 and Nox3

2021 ◽  
pp. 1-9
Author(s):  
Yinfang Xu ◽  
Liping Yang ◽  
Xing Zhao ◽  
Yan Zhang ◽  
Timothy A. Jones ◽  
...  

BACKGROUND: Otoconia-related vertigo and balance deficits are common in humans, but the molecular etiology is unknown at present. OBJECTIVE: In order to study mechanisms of otoconia formation and maintenance, we have investigated whether otoconin-90 (Oc90), the predominant otoconial constituent protein, and the NADPH oxidase Nox3, an essential regulatory protein for otoconia formation, are functionally interlinked. METHODS: We performed balance behavioral, electrophysiological, morphological and molecular cellular analyses. RESULTS: Double heterozygous mutant mice for Oc90 and Nox3 show severe imbalance, albeit less profound than double null mutants. In contrast, single heterozygous mutant mice have normal balance. Double heterozygous mice have otoconia defects and double null mice have no otoconia. In addition, some hair bundles in the latter mice go through accelerated degeneration. In vitro calcification analysis in cells stably expressing these proteins singly and doubly shows much more intense calcification in the double transfectants. CONCLUSIONS: Oc90 and Nox3 augment each other’s function, which is not only critical for otoconia formation but also for hair bundle maintenance.

2020 ◽  
Vol 117 (48) ◽  
pp. 30722-30727
Author(s):  
R. G. Alonso ◽  
M. Tobin ◽  
P. Martin ◽  
A. J. Hudspeth

Hearing and balance rely on the capacity of mechanically sensitive hair bundles to transduce vibrations into electrical signals that are forwarded to the brain. Hair bundles possess tip links that interconnect the mechanosensitive stereocilia and convey force to the transduction channels. A dimer of dimers, each of these links comprises two molecules of protocadherin 15 (PCDH15) joined to two of cadherin 23 (CDH23). The “handshake” that conjoins the four molecules can be disrupted in vivo by intense stimulation and in vitro by exposure to Ca2+chelators. Using hair bundles from the rat’s cochlea and the bullfrog’s sacculus, we observed that extensive recovery of mechanoelectrical transduction, hair bundle stiffness, and spontaneous bundle oscillation can occur within seconds after Ca2+chelation, especially if hair bundles are deflected toward their short edges. Investigating the phenomenon in a two-compartment ionic environment that mimics natural conditions, we combined iontophoretic application of a Ca2+chelator to selectively disrupt the tip links of individual frog hair bundles with displacement clamping to control hair bundle motion and measure forces. Our observations suggest that, after the normal Ca2+concentration has been restored, mechanical stimulation facilitates the reconstitution of functional tip links.


Blood ◽  
2010 ◽  
Vol 116 (18) ◽  
pp. 3517-3525 ◽  
Author(s):  
Yasuyuki Saito ◽  
Hiroko Iwamura ◽  
Tetsuya Kaneko ◽  
Hiroshi Ohnishi ◽  
Yoji Murata ◽  
...  

Abstract The molecular basis for regulation of dendritic cell (DC) development and homeostasis remains unclear. Signal regulatory protein α (SIRPα), an immunoglobulin superfamily protein that is predominantly expressed in DCs, mediates cell-cell signaling by interacting with CD47, another immunoglobulin superfamily protein. We now show that the number of CD11chigh DCs (conventional DCs, or cDCs), in particular, that of CD8−CD4+ (CD4+) cDCs, is selectively reduced in secondary lymphoid tissues of mice expressing a mutant form of SIRPα that lacks the cytoplasmic region. We also found that SIRPα is required intrinsically within cDCs or DC precursors for the homeostasis of splenic CD4+ cDCs. Differentiation of bone marrow cells from SIRPα mutant mice into DCs induced by either macrophage-granulocyte colony-stimulating factor or Flt3 ligand in vitro was not impaired. Although the accumulation of the immediate precursors of cDCs in the spleen was also not impaired, the half-life of newly generated splenic CD4+ cDCs was markedly reduced in SIRPα mutant mice. Both hematopoietic and nonhematopoietic CD47 was found to be required for the homeostasis of CD4+ cDCs and CD8−CD4−(double negative) cDCs in the spleen. SIRPα as well as its ligand, CD47, are thus important for the homeostasis of CD4+ cDCs or double negative cDCs in lymphoid tissues.


2011 ◽  
Vol 22 (23) ◽  
pp. 4563-4574 ◽  
Author(s):  
Elif Nur Firat-Karalar ◽  
Peter P. Hsiue ◽  
Matthew D. Welch

Junction-mediating and regulatory protein (JMY) is a p53 cofactor that was recently shown to nucleate actin assembly by a hybrid mechanism involving tandem actin monomer binding and Arp2/3 complex activation. However, the regulation and function of JMY remain largely uncharacterized. We examined the activity of JMY in vitro and in cells, its subcellular distribution, and its function in fibroblast and neuronal cell lines. We demonstrated that recombinant full-length JMY and its isolated WASP homology 2 domain, connector, and acidic region (WWWCA) have potent actin-nucleating and Arp2/3-activating abilities in vitro. In contrast, the activity of full-length JMY, but not the isolated WWWCA domain, is suppressed in cells. The WWWCA domain is sufficient to promote actin-based bead motility in cytoplasmic extracts, and this activity depends on its ability to activate the Arp2/3 complex. JMY is expressed at high levels in brain tissue, and in various cell lines JMY is predominantly cytoplasmic, with a minor fraction in the nucleus. Of interest, silencing JMY expression in neuronal cells results in a significant enhancement of the ability of these cells to form neurites, suggesting that JMY functions to suppress neurite formation. This function of JMY requires its actin-nucleating activity. These findings highlight a previously unrecognized function for JMY as a modulator of neuritogenesis.


2002 ◽  
Vol 93 (4) ◽  
pp. 1357-1364 ◽  
Author(s):  
K. A. Sanders ◽  
K. M. Sundar ◽  
L. He ◽  
B. Dinger ◽  
S. Fidone ◽  
...  

It has been hypothesized that O2sensing in type I cells of the carotid body and erythropoietin (EPO)-producing cells of the kidney involves protein components identical to the NADPH oxidase system responsible for the respiratory burst of phagocytes. In the present study, we evaluated O2sensing in mice with null mutant genotypes for two components of the phagocytic oxidase. Whole body plethysmography was used to study unanesthetized, unrestrained mice. When exposed to an acute hypoxic stimulus, gp91phox-null mutant and wild-type mice increased their minute ventilation by similar amounts. In contrast, p47phox-null mutant mice demonstrated increases in minute ventilation in response to hypoxia that exceeded that of their wild-type counterparts: 98.0 ± 18.0 vs. 20.0 ± 13.0% ( n = 11, P = 0.003). In vitro recordings of carotid sinus nerve (CSN) activity demonstrated that resting (basal) neural activity was marginally elevated in p47phox-null mutant mice. With hypoxic challenge, mean CSN discharge was 1.5-fold greater in p47phox-null mutant than in wild-type mice: 109.61 ± 13.29 vs. 72.54 ± 7.65 impulses/s ( n = 8 and 7, respectively, P = 0.026). Consequently, the hypoxia-evoked CSN discharge (stimulus-basal) was ∼58% larger in p47phox-null mutant mice. Quantities of EPO mRNA in kidney were similar in gp91phox- and p47phox-null mutant mice and their respective wild-type controls exposed to hypobaric hypoxia for 72 h. These findings confirm the previous observation that absence of the gp91phoxcomponent of the phagocytic NADPH oxidase does not alter the O2-sensing mechanism of the carotid body. However, absence of the p47phoxcomponent significantly potentiates ventilatory and chemoreceptor responses to hypoxia. O2sensing in EPO-producing cells of the kidney appears to be independent of the gp91phoxand p47phoxcomponents of the phagocytic NADPH oxidase.


2021 ◽  
Vol 22 (20) ◽  
pp. 10977
Author(s):  
Laszlo Kovacs ◽  
Thiago Bruder-Nascimento ◽  
Lindsey Greene ◽  
Simone Kennard ◽  
Eric J. Belin de Chantemèle

People living with human immunodeficiency virus (HIV) (PLWH) have increased risk for atherosclerosis-related cardiovascular disease (CVD), the main cause of death in this population. Notwithstanding, the mechanisms of HIV-associated vascular pathogenesis are not fully elucidated. Therefore, we sought to determine whether HIV-regulatory protein Tat mediates HIV-induced endothelial dysfunction via NADPH oxidase 1 (Nox1)-dependent mechanisms. Body weight, fat mass, leptin levels, expression of reactive oxygen species (ROS)-producing enzymes and vascular function were assessed in C57BL/6 male mice treated with Tat for 3 days and 4 weeks. Aortic rings and human endothelial cells were also treated with Tat for 2–24 h in ex vivo and in vitro settings. Chronic (4 weeks) but not acute (3 days and 2–24 h) treatment with Tat decreased body weight, fat mass, and leptin levels and increased the expression of Nox1 and its coactivator NADPH oxidase Activator 1 (NoxA1). This was associated with impaired endothelium-dependent vasorelaxation. Importantly, specific inhibition of Nox1 with GKT771 and chronic leptin infusion restored endothelial function in Tat-treated mice. These data rule out direct effects of HIV-Tat on endothelial function and imply the contribution of reductions in adipose mass and leptin production which likely explain upregulated expression of Nox1 and NoxA1. The Nox1 and leptin system may provide potential targets to improve vascular function in HIV infection-associated CVD.


2020 ◽  
Author(s):  
R. G. Alonso ◽  
M. Tobin ◽  
P. Martin ◽  
A. J. Hudspeth

AbstractHearing and balance rely on the capacity of mechanically sensitive hair bundles to transduce vibrations into electrical signals that are forwarded to the brain. Hair bundles possess tip links that interconnect the mechanosensitive stereocilia and convey force to the transduction channels. A dimer of dimers, each of these links comprises two molecules of protocadherin 15 (PCDH15) joined to two of cadherin 23 (CDH23). The “handshake” that conjoins the four molecules can be disrupted in vivo by intense stimulation and in vitro by exposure to Ca2+ chelators. Using hair bundles from the rat’s cochlea and the bullfrog’s sacculus, we observed that extensive recovery of mechanoelectrical transduction, hair-bundle stiffness, and spontaneous bundle oscillation can occur within seconds after Ca2+ chelation, especially if hair bundles are deflected towards their short edges. Investigating the phenomenon in a two-compartment ionic environment that mimics natural conditions, we combined iontophoretic application of a Ca2+ chelator to selectively disrupt the tip links of individual frog hair bundles with displacement clamping to control hair-bundle motion and measure forces. Our observations suggest that, after the normal Ca2+ concentration has been restored, mechanical stimulation facilitates the reconstitution of functional tip links.Significance StatementEach of the sensory receptors responsible for hearing or balance—a hair cell—has a mechanosensitive hair bundle. Mechanical stimuli pull upon molecular filaments—the tip links—that open ionic channels in the hair bundle. Loud sounds can damage hearing by breaking the tip links; recovery by replacement of the constituent proteins then requires several hours. We disrupted the tip links in vitro by removing the calcium ions that stabilize them, then monitored the electrical response or stiffness of hair bundles to determine whether the links could recover. We found that tip links recovered within seconds if their ends were brought back into contact. This form of repair might occur in normal ears to restore sensitivity after damage.


Author(s):  
Ф.М. Шакова ◽  
Т.И. Калинина ◽  
М.В. Гуляев ◽  
Г.А. Романова

Цель исследования - изучение влияния комбинированной терапии (мутантные молекулы эритропоэтина (EPO) и дипептидный миметик фактора роста нервов ГК-2H) на воспроизведение условного рефлекса пассивного избегания (УРПИ) и объем поражения коры мозга у крыс с двусторонним ишемическим повреждением префронтальной коры. Методика. Мутантные молекулы EPO (MЕРО-TR и MЕPО-Fc) с значительно редуцированной эритропоэтической и выраженной цитопротекторной активностью созданы методом генной инженерии. Используемый миметик фактора роста нервов человека, эндогенного регуляторного белка, в экспериментах in vitro проявлял отчетливые нейропротективные свойства. Двустороннюю фокальную ишемию префронтальной коры головного мозга крыс создавали методом фотохимического тромбоза. Выработку и оценку УРПИ проводили по стандартной методике. Объем повреждения мозга оценивался при помощи МРТ. MEPO-TR и MEPO-Fc (50 мкг/кг) вводили интраназально однократно через 1 ч после фототромбоза, ГК-2Н (1 мг/кг) - внутрибрюшинно через 4 ч после фототромбоза и далее в течение 4 послеоперационных суток. Результаты. Выявлено статистически значимое сохранение выработанного до ишемии УРПИ, а также значимое снижение объема повреждения коры при комплексной терапии. Полученные данные свидетельствуют об антиамнестическом и нейропротекторном эффектах примененной комбинированной терапии, которые наиболее отчетливо выражены в дозах: МEPO-Fc (50 мкг/кг) и ГК-2Н (1 мг/кг). Заключение. Подтвержден нейропротекторный эффект и усиление антиамнестического эффекта при сочетанном применении мутантных производных эритропоэтина - MEPO-TR и MEPO-Fc и дипептидного миметика фактора роста нервов человека ГК-2H. The aim of this study was to investigate the effect of combination therapy, including mutant erythropoietin molecules (EPO) and a dipeptide mimetic of the nerve growth factor, GK-2H, on the conditioned passive avoidance (PA) reflex and the volume of injury induced by bilateral ischemia of the prefrontal cortex in rats. Using the method of genetic engineering the mutant molecules of EPO, MERO-TR and MEPO-Fc, with strongly reduced erythropoietic and pronounced cytoprotective activity were created. The used human nerve growth factor mimetic, an endogenous regulatory protein based on the b-bend of loop 4, which is a dimeric substituted dipeptide of bis- (N-monosuccinyl-glycyl-lysine) hexamethylenediamine, GK-2 human (GK-2H), has proven neuroprotective in in vitro experiments. Methods. Bilateral focal ischemic infarction was modeled in the rat prefrontal cortex by photochemically induced thrombosis. The PA test was performed according to a standard method. Volume of brain injury was estimated using MRI. MEPO-TR, and MEPO-Fc (50 mg/kg, intranasally) were administered once, one hour after the injury. GK-2Н (1 mg/kg, i.p.) was injected four hours after the injury and then for next four days. Results. The study showed that the complex therapy provided statistically significant retention of the PA reflex developed prior to ischemia and a significant decrease in the volume of injury. The anti-amnestic and neuroprotective effects of combination therapy were most pronounced at doses of MEPO-Fc 50 mg/kg and GK-2H 1 mg/kg. Conclusion. This study has confirmed the neuroprotective effect and enhancement of the anti-amnestic effect exerted by the combination of mutant erythropoietin derivatives, MEPO-TR and MEPO-Fc, and the dipeptide mimetic of human growth factor GK-2H.


2020 ◽  
Vol 17 (3) ◽  
pp. 259-266 ◽  
Author(s):  
Xuan Chen ◽  
Sumei Zhang ◽  
Peipei Shi ◽  
Yangli Su ◽  
Dong Zhang ◽  
...  

Objective: Ischemia-reperfusion (I/R) injury is a pathological feature of ischemic stroke. This study investigated the regulatory role of miR-485-5p in I/R injury. Methods: SH-SY5Y cells were induced with oxygen and glucose deprivation/reoxygenation (OGD/R) to mimic I/R injury in vitro. Cells were transfected with designated constructs (miR-485- 5p mimics, miR-485-5p inhibitor, lentiviral vectors overexpressing Rac1 or their corresponding controls). Cell viability was evaluated using the MTT assay. The concentrations of lactate dehydrogenase, malondialdehyde, and reactive oxygen species were detected to indicate the degree of oxidative stress. Flow cytometry and caspase-3 activity assay were used for apoptosis assessment. Dual-luciferase reporter assay was performed to confirm that Rac family small GTPase 1 (Rac1) was a downstream gene of miR-485-5p. Results: OGD/R resulted in decreased cell viability, elevated oxidative stress, increased apoptosis, and downregulated miR-485-5p expression in SH-SY5Y cells. MiR-485-5p upregulation alleviated I/R injury, evidenced by improved cell viability, decreased oxidative markers, and reduced apoptotic rate. OGD/R increased the levels of Rac1 and neurogenic locus notch homolog protein 2 (Notch2) signaling-related proteins in cells with normal miR-485-5p expression, whereas miR- 485-5p overexpression successfully suppressed OGD/R-induced upregulation of these proteins. Furthermore, the delivery of vectors overexpressing Rac1 in miR-485-5p mimics-transfected cells reversed the protective effect of miR-485-5p in cells with OGD/R-induced injury. Conclusion: This study showed that miR-485-5p protected cells following I/R injury via targeting Rac1/Notch2 signaling suggest that targeted upregulation of miR-485-5p might be a promising therapeutic option for the protection against I/R injury.


1999 ◽  
Vol 111 (3) ◽  
pp. 198-205 ◽  
Author(s):  
Gerald G. Krueger ◽  
Jeffery R. Morgan ◽  
Marta J. Petersen
Keyword(s):  

1997 ◽  
Vol 41 (5) ◽  
pp. 1082-1093 ◽  
Author(s):  
S M Daluge ◽  
S S Good ◽  
M B Faletto ◽  
W H Miller ◽  
M H St Clair ◽  
...  

1592U89, (-)-(1S,4R)-4-[2-amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclo pentene-1-methanol, is a carbocyclic nucleoside with a unique biological profile giving potent, selective anti-human immunodeficiency virus (HIV) activity. 1592U89 was selected after evaluation of a wide variety of analogs containing a cyclopentene substitution for the 2'-deoxyriboside of natural deoxynucleosides, optimizing in vitro anti-HIV potency, oral bioavailability, and central nervous system (CNS) penetration. 1592U89 was equivalent in potency to 3'-azido-3'-deoxythymidine (AZT) in human peripheral blood lymphocyte (PBL) cultures against clinical isolates of HIV type 1 (HIV-1) from antiretroviral drug-naive patients (average 50% inhibitory concentration [IC50], 0.26 microM for 1592U89 and 0.23 microM for AZT). 1592U89 showed minimal cross-resistance (approximately twofold) with AZT and other approved HIV reverse transcriptase (RT) inhibitors. 1592U89 was synergistic in combination with AZT, the nonnucleoside RT inhibitor nevirapine, and the protease inhibitor 141W94 in MT4 cells against HIV-1 (IIIB). 1592U89 was anabolized intracellularly to its 5'-monophosphate in CD4+ CEM cells and in PBLs, but the di- and triphosphates of 1592U89 were not detected. The only triphosphate found in cells incubated with 1592U89 was that of the guanine analog (-)-carbovir (CBV). However, the in vivo pharmacokinetic, distribution, and toxicological profiles of 1592U89 were distinct from and improved over those of CBV, probably because CBV itself was not appreciably formed from 1592U89 in cells or animals (<2%). The 5'-triphosphate of CBV was a potent, selective inhibitor of HIV-1 RT, with Ki values for DNA polymerases (alpha, beta, gamma, and epsilon which were 90-, 2,900-, 1,200-, and 1,900-fold greater, respectively, than for RT (Ki, 21 nM). 1592U89 was relatively nontoxic to human bone marrow progenitors erythroid burst-forming unit and granulocyte-macrophage CFU (IC50s, 110 microM) and human leukemic and liver tumor cell lines. 1592U89 had excellent oral bioavailability (105% in the rat) and penetrated the CNS (rat brain and monkey cerebrospinal fluid) as well as AZT. Having demonstrated an excellent preclinical profile, 1592U89 has progressed to clinical evaluation in HIV-infected patients.


Sign in / Sign up

Export Citation Format

Share Document