scholarly journals Numerical Studies of Deformations and Crack Propagation in Reinforced Concrete Annular Sections Under Thermopower Loads

2021 ◽  
Vol 10 (3) ◽  
Author(s):  
Ihor Karkhut ◽  
◽  
Josyp Luchko ◽  
Vladyslav Kirichok

The article describes the current state and the level of research of annular cross-sections of structures of energy facilities operating under conditions of thermal and force effects. The results of a numerical experiment to study the deformability and crack resistance of annular сross-sections and their comparison with the results of testing physical models of fragments of reinforced concrete chimneys are presented. It is shown that at the modern level of development of the mathematical apparatus and computer calculation programs, using the deformation model, the deviation does not exceed 20%. The described research results of other authors and this work confirm the possibility of replacing cost and long-term field tests with numerical experiments.

2021 ◽  
Vol 887 ◽  
pp. 665-671
Author(s):  
N.I. Karpenko ◽  
S.N. Karpenko ◽  
D.Z. Kadiev ◽  
G.A. Moiseenko

The use of the nonlinear deformation model in computer calculation methods involves the use of time-consuming step-iteration methods for solving systems of resolving equations with problems of convergence. To eliminate these difficulties, the physical relations of the deformation model are established in finite increments. The article considers the construction of such a model in finite increments as applied to the calculation of the core reinforced-concrete structures in the overall case of oblique bending and oblique eccentric compression or tension, taking into account the action by the cross sections of low subzero temperatures.


Problems when calculating reinforced concrete structures based on the concrete deformation under compression diagram, which is presented both in Russian and foreign regulatory documents on the design of concrete and reinforced concrete structures are considered. The correctness of their compliance for all classes of concrete remains very approximate, especially a significant difference occurs when using Euronorm due to the different shape and sizes of the samples. At present, there are no methodical recommendations for determining the ultimate relative deformations of concrete under axial compression and the construction of curvilinear deformation diagrams, which leads to limited experimental data and, as a result, does not make it possible to enter more detailed ultimate strain values into domestic standards. The results of experimental studies to determine the ultimate relative deformations of concrete under compression for different classes of concrete, which allowed to make analytical dependences for the evaluation of the ultimate relative deformations and description of curvilinear deformation diagrams, are presented. The article discusses various options for using the deformation model to assess the stress-strain state of the structure, it is concluded that it is necessary to use not only the finite values of the ultimate deformations, but also their intermediate values. This requires reliable diagrams "s–e” for all classes of concrete. The difficulties of measuring deformations in concrete subjected to peak load, corresponding to the prismatic strength, as well as main cracks that appeared under conditions of long-term step loading are highlighted. Variants of more accurate measurements are proposed. Development and implementation of the new standard GOST "Concretes. Methods for determination of complete diagrams" on the basis of the developed method for obtaining complete diagrams of concrete deformation under compression for the evaluation of ultimate deformability of concrete under compression are necessary.


2019 ◽  
Vol 974 ◽  
pp. 570-576
Author(s):  
Alexander I. Nikulin ◽  
Al-Khawaf Ali Fadhil Qasim

The article proposes a new approach to improving the methodology for calculating the bearing capacity of the eccentrically compressed reinforced concrete elements for cases of their loading with large eccentricities. The basis of this technique is considered as a modified version of the deformation model for the reinforced concrete resistance force. The main feature of this model is the energy approach to transforming the reference diagrams of compression and concrete tension into the diagrams of non-uniform deformation, corresponding to the stress-strain state of the compressed and stretched zones of concrete in the cross section of the eccentrically compressed reinforced concrete structures. This way there is no falling branch in the concrete diagrams obtained by this method. A calculation diagram of the steel reinforcement deformation with a physical yield point was taken as a partial function, consisting of one linear and two non-linear equations. The proposed method also shows the possibility of taking into account the greatest curvature of an eccentrically compressed reinforced concrete element in the plane of its loading. The article presents all the necessary dependencies allowing the theoretical value of the carrying capacity of an eccentrically compressed reinforced concrete element determination. The results of the numerical studies performed using the design software developed by the authors for the personal computer are given.


2006 ◽  
Vol 321-323 ◽  
pp. 357-362 ◽  
Author(s):  
Chih Peng Yu ◽  
Chia Chi Cheng ◽  
Chih Hung Chiang

In this paper, a newly developed approach for the determination of characteristics associated with local defects of a beam is briefly introduced. From the numerical studies carried out in this study, the complex ratio between two transfer functions associated with an imaginary intact beam and a damaged beam can provide such information. Based on the numerical studies, the rules in determining degree of damages and locations of defects were first briefly outlined. These idealized rules were then verified by experimental data obtained from dynamic tests of realistic specimens of simply-supported reinforced concrete beams. The preliminary results indicate that the defined ratio of transfer functions can potentially serve as an exaggerated indication for the degree of changes in certain modal responses. Thus, the proposed ratio of transfer functions can be used to assist system identification, while the nature of high sensitivity also restricts its direct application to certain complicated data associated with field tests. A variety of test setup for both receivers and impact sources were studied and the test results appear to agree with designated conditions of the specimens.


Author(s):  
Y. Nikulina

Beams of a trapezoidal cross-section with a wide upper edge with prestressed reinforcement combine positive qualities in terms of strength, crack resistance, deformability and resource saving, which allows them to cover significant spans of multi-storey buildings. To develop a method for calculating the moment of cracking in these structures, a nonlinear deformation model was adopted, which includes equilibrium equations, conditions for the linear distribution of relative deformations along the height of the element section, and refined deformation diagrams of concrete and reinforcement. Concrete state diagrams are assumed to be nonlinear without a falling branch. To describe the deformation diagrams of high-strength and conventional reinforcement, a universal dependence is adopted, consisting of one linear and two nonlinear equations, in which the calculation of individual parameters is performed using different formulas. For the initial stage of the crack formation process, a design scheme is presented, in accordance with which the necessary equations and ratios are drawn up in relation to the considered prestressed reinforced concrete beam of a trapezoidal cross-section. The purpose of the study, in addition to developing a calculation methodology, was also the development of an algorithm and a computer calculation program. To obtain and analyze the results, a numerical experiment was carried out, the results of which are presented in tabular form. Due to the fact that the calculation method was built without involving empirical dependencies, the possibility of its application to determine the crack resistance of prestressed reinforced concrete beams of trapezoidal cross-section for any class of concrete and reinforcement was confirmed.


2021 ◽  
pp. 002199832110029
Author(s):  
Katarína Gajdošová ◽  
Róbert Sonnenschein ◽  
Stanislav Blaho

This paper presents an investigation of the performance of concrete beams reinforced with glass fiber-reinforced polymers (GFRP) under short-term loading. A total of six specimens with rectangular cross-sections (75 mm in height and 150 mm in width) were tested under a four-point bending test to failure. Each specimen was reinforced with two GFRP bars with diameters of 8 mm. The results of this study demonstrated the behavior of GFRP-reinforced concrete members and a validation of the available calculation methods for the deflection of these members and assumed possibilities of the use of a GFRP reinforcement over the long term. The results of the study presented show a very good agreement of an experimentally measured and theoretically calculated instantaneous deflection when using the approaches in the European and American standards. In calculations of long-term deflections, the results are highly inconsistent and seem to be quite overestimated in some cases. The study shows the necessity of real-time long-term measurements to demonstrate the real deformations to be assumed during design of structures reinforced with GFRP reinforcement.


Author(s):  
M.G. Surianinov ◽  
◽  
S.P. Neutov ◽  
I.B. Korneieva ◽  
D.O. Kirichenko ◽  
...  

Abstract. The results of a numerical and experimental study of the bearing capacity of a circular concrete arch loaded with hydrostatic pressure are presented. To implement the specified scheme of loading arches, the authors made a stand that allows you to determine the bearing capacity of models of concrete, reinforced concrete, steel-fiber concrete and wooden arches. For experiments, a double-hinged arch was made of concrete С16/20. At the same time, samples-cubes with an edge size of 10 cm were prepared from the same batch, which were tested for compression in accordance with the current regulatory documents. During the tests, the load was applied in small steps for a detailed study of the arch deformation process. At each stage, the readings of the measuring devices, dial indicators and strain gauges, were recorded. For computer modeling and numerical analysis by the finite element method, the software LIRA-SAPR was used. It is noted that, despite the widespread use of arched structures made of reinforced concrete, there are still no generalizing conclusions and recommendations for determining their actual bearing capacity and strengthening methods in the domestic literature. During the tests, a breaking load of 600 kN was achieved, that is, the bearing capacity of the arch, determined experimentally, was 0.845 of the value obtained by numerical analysis, although, as a rule, in our experimental studies of other structures, the theoretical value of the bearing capacity turned out to be lower than the actual one. In this case, the destruction occurred in the support part, i.e. at the junction of the support (heel) and the arch, which is explained by the lack of reinforcement of the heel. The results of experimental and numerical studies of a concrete arch indicate that under this loading scheme, almost equal stresses arise in all cross sections of the arch. Obviously, the bearing capacity of the structure can be increased due to the uniform dispersed reinforcement of the arch and reinforcement of the heel with bar reinforcement, which determines the direction of our further research.


2020 ◽  
Vol 53 (6) ◽  
Author(s):  
F. Muslim ◽  
H. S. Wong ◽  
G. Cheng ◽  
C. Alexandrou ◽  
B. Liu ◽  
...  

AbstractAll concrete structures contain reinforcement spacers, and deep sections can be affected by bleeding and segregation without displaying visible indications during casting. However, their effects on mass transport and long-term durability are not well studied. In this paper, reinforced concrete columns were prepared with plastic and cementitious spacers to achieve 50 mm cover, and compacted at different vibration frequencies and durations. 28d cured samples were extracted along the height, conditioned to equilibrium (21 °C, 75% RH or 50 °C, 7% RH), and then subjected to water absorption, electrical conduction, epoxy impregnation and fluorescence imaging. Samples from the top of the column consistently gave higher accessible porosity and mass transport compared to samples from the bottom. Presence of spacers caused additional increases in mass transport because of preferential flow through the spacer-concrete interface which is more porous and microcracked compared to bulk concrete farther away. Image analysis on cross-sections showed that the columns experienced some aggregate segregation despite care taken to avoid over-compaction. The resistance of concrete to ingress of aggressive agents decreases with increasing height due to the combined negative effects of reinforcement spacers and segregation.


Author(s):  
Allen Angel ◽  
Kathryn A. Jakes

Fabrics recovered from archaeological sites often are so badly degraded that fiber identification based on physical morphology is difficult. Although diagenetic changes may be viewed as destructive to factors necessary for the discernment of fiber information, changes occurring during any stage of a fiber's lifetime leave a record within the fiber's chemical and physical structure. These alterations may offer valuable clues to understanding the conditions of the fiber's growth, fiber preparation and fabric processing technology and conditions of burial or long term storage (1).Energy dispersive spectrometry has been reported to be suitable for determination of mordant treatment on historic fibers (2,3) and has been used to characterize metal wrapping of combination yarns (4,5). In this study, a technique is developed which provides fractured cross sections of fibers for x-ray analysis and elemental mapping. In addition, backscattered electron imaging (BSI) and energy dispersive x-ray microanalysis (EDS) are utilized to correlate elements to their distribution in fibers.


Author(s):  
Tatiana Vasilievna Pomogaeva ◽  
Aliya Ahmetovna Aseinova ◽  
Yuriy Aleksandrovich Paritskiy ◽  
Vjacheslav Petrovich Razinkov

The article presents annual statistical data of the Caspian Research Institute of Fishery. There has been kept track of the long term dynamics of the stocks of three species of Caspian sprat (anchovy, big-eyed kilka, sprat) and investigated a process of substituting a food item of sprats Eurytemora grimmi to a small-celled copepod species Acartia tonsa Dana. According to the research results, there has been determined growth potential of stocks of each species. Ctenophoran-Mnemiopsis has an adverse effect on sprat population by eating fish eggs and larvae. Ctenophoram - Mnemiopsis is a nutritional competitor to the full-grown fishes. The article gives recommendations on reclamation of stocks of the most perspective species - common sprat, whose biological characteristics helped not to suffer during Ctenophoram outburst and to increase its population during change of the main food item. Hydroacoustic survey data prove the intensive growth of common sprat biomass in the north-west part of the Middle Caspian. According to the results of the research it may be concluded that to realize the volumes of recommended sprat catch it is necessary to organize the marine fishery of common sprat at the Russian Middle Caspian shelf.


Sign in / Sign up

Export Citation Format

Share Document