scholarly journals Investigation of factors affecting on the anaerobic degradation of organic waste

2016 ◽  
Vol 19 (3) ◽  
pp. 108-117
Author(s):  
Hoang Cong Phan ◽  
Ngoc Van Kim Phan ◽  
Hoa Thi Pham

Although anaerobic degradation reactions of organic waste are feasible, and have been studied since 1990. However, until now, optimizing the reaction rate to get the highest methane yield is still needed. Therefore, it is necessary to optimize the operational parameters. The goal of this study is to investigate the impacts of temperature, ratio of solid waste and innoculum, and total solid percentage to the anaerobic degradation reactions. Solid waste was the mixture of water hyacinth (representative of plant components in the organic waste stream) and cow manure (ratio of water hyacinth: cow manure = 2:1). The mixture was composted until getting a homogenous texture in order to facilitate for the anaerobic digestion process. Two temperature conditions (55 oC and 37 oC), three solid wasteinoculum (S:I) ratios (1:2, 2:1, 1:1) and five percentages of total solid (30 %, 24 %, 18 %, 14 %, 10 %) were investigated. The result indicated that in the thermophilic condition (55 oC), 24 % TS, and S:I ratio of 1:2, the reactor generated the highest methane yield after 30 days.

2021 ◽  
Author(s):  
Abdoliman Amouei ◽  
Ali Darvish Sasi ◽  
Aliakbar Amooey

Abstract Today, biogas production from municipal solid waste as one of the most important sources of energy supply in the world is increasing. In this study, the potential of biogas production from a mixture of cow dung and catering waste was investigated using a continuous flow anaerobic bioreactor with 60 litres at the Bench scale. Operational parameters such as pH, Carbon to Nitrogen ratio (C/N), mixing ratio of restaurant and cow waste in weight percentage (0:100, 50:50, 70:30, and 100:0), total solids (TS) (%5, %10 and %20), temperatures (35, 45 and 55°C) and oxidation-reduction potential (ORP) were evaluated. The results showed that the maximum yield and percent of the biogas produced from cow manure digestion separately was 1003 ml/day and %52.82. Digestion of the catering waste and cow manure as a mixture showed the best mixing ratio, total solid and temperature is 70:30 (w/w), %20 and 55°C respectively and biogas production yield and percent in this conditions was obtained 5430 ml/day and %74.4 respectively. The ORP obtained in this study is -327 millivolt (mv), which indicates the appropriate conditions of the anaerobic process in biogas production and confirmation of methanogenesis.


2020 ◽  
Vol 12 (5) ◽  
pp. 1815 ◽  
Author(s):  
Sai Ge ◽  
Jun Ma ◽  
Lei Liu ◽  
Zhiming Yuan

In this work, the impact of exogenous aerobic bacteria mixture (EABM) on municipal solid waste (MSW) is well evaluated in the following aspects: biogas production, leachate analysis, organic waste degradation, EABM population, and the composition of microbial communities. The study was designed and performed as follows: the control bioreactor (R1) was filled up with MSW and the culture medium of EABM and the experimental bioreactor (R2) was filled up with MSW and EABM. The data suggests that the composition of microbial communities (bacterial and methanogenic) in R1 and R2 were similar at day 0, while the addition of EABM in R2 led to a differential abundance of Bacillus cereus, Bacillus subtilis, Staphylococcus saprophyticus, Staphlyoccus xylosus, and Pantoea agglomerans in two bioreactors. The population of exogenous aerobic bacteria in R2 greatly increased during hydrolysis and acidogenesis stages, and subsequently increased the degradation of volatile solid (VS), protein, lipid, and lignin by 59.25%, 25.68%, 60.47%, and 197.62%, respectively, compared to R1. The duration of hydrolysis and acidogenesis in R2 was 33.33% shorter than that in R1. At the end of the study, the accumulative methane yield in R2 (494.4 L) was almost three times more than that in R1 (187.4 L). In addition, the abundance of acetoclasic methanogens increased at acetogenesis and methanogenesis stages in both bioreactors, which indicates that acetoclasic methanogens (especially Methanoseata) could contribute to methane production. This study demonstrates that EABM can accelerate organic waste degradation to promote MSW biodegradation and methane production. Moreover, the operational parameters helped EABM to generate 20.85% more in accumulative methane yield. With a better understanding of how EABM affects MSW and the composition of bacterial community, this study offers a potential practical approach to MSW disposal and cleaner energy generation worldwide.


2018 ◽  
Vol 3 (4) ◽  
pp. 36
Author(s):  
Ukwuaba Samuel Ifeanyi

Solid wastes are generated and dump indiscriminately in Nigeria due to poor implementation of standards, thus causing environmental and public health hazards. Nigeria generates more than 32 million tons of solid waste annually, out of which only 20-30% is collected and disposed in an open dump site. Different researchers have reported that organic waste fraction of solid waste generated in Nigeria has the highest percentage which is over 50%. However, this fraction of organic waste is yet to be properly utilized for biogas production. This research work is focused on the performance evaluation of biogas potential yields from co-digestion of kitchen wastes and water hyacinth. A 0.030m3 anaerobic mild steel digester was fabricated and used to digest the composition of water hyacinth and kitchen wastes. The experiment was conducted under mesophilic temperature range and a pH range of 6.0-7.4. The results obtained show that a cumulative biogas yield of 0.0499m3 was obtained from 30kg of substrates composition of kitchen waste and water hyacinth. Besides, optimum biogas yields were obtained at optimum mesophilic temperature.


2018 ◽  
Vol 68 (12) ◽  
pp. 2941-2947
Author(s):  
George Ungureanu ◽  
Gabriela Ignat ◽  
elena Leonte ◽  
Carmen Luiza Costuleanu ◽  
Nicoleta Stanciu ◽  
...  

The problem associated with the household behavior on solid waste disposal site in today�s society is complex because of the large quantity and diverse nature of the wastes. Due increase the population, rapid development, global agricultural development has moved rapidly, limitations of financing, emerging limitations of both energy and raw materials and also add to the complexity of any waste management system, large quantities of wastes are being generated in different forms such as solid, liquid and gases. This research explored factors affecting the level of participation in solid waste segregation and recycling of households in Romania, as well as examining current Romania households waste management practices and their knowledge of waste management. This study investigated the solid waste situation and the organization of solid waste management in both urban and rural settings from the perspective of households. Solid waste management is a key component of public services which needs to serve the urban and rural municipalities in an efficient way in order to maintain a decent standard of public health.


2000 ◽  
Vol 41 (4-5) ◽  
pp. 487-492 ◽  
Author(s):  
D. Pak ◽  
W. Chang

A two-biofilter system operated under alternating anaerobic/aerobic conditions was tested to remove nutrient as well as organics from wastewater generated from car-washing facility. The wastewater was characterized by relatively low organic and high phosphorus content. The factors affecting phosphorus removal in the two-biofilter system were investigated. Operational parameters examined in this study were hydraulic retention time, organic, suspended solid and nitrogen loading rate. The factors affecting phosphorus removal in biological filter appeared to be influent COD, COD/T–P, BOD/COD, nitrogen, and SS/T–P. Nitrite and nitrate produced in the biofilter in aerobic condition affected phosphorus removal by the two-biofilter system. The biomass wasted during backwash procedure also affected total phosphorus removal by the system.


Author(s):  
D. de la Lama-Calvente ◽  
M. J. Fernández-Rodríguez ◽  
J. Llanos ◽  
J. M. Mancilla-Leytón ◽  
R. Borja

AbstractThe biomass valorisation of the invasive brown alga Rugulopteryx okamurae (Dictyotales, Phaeophyceae) is key to curbing the expansion of this invasive macroalga which is generating tonnes of biomass on southern Spain beaches. As a feasible alternative for the biomass management, anaerobic co-digestion is proposed in this study. Although the anaerobic digestion of macroalgae barely produced 177 mL of CH4 g−1 VS, the co-digestion with a C-rich substrate, such as the olive mill solid waste (OMSW, the main waste derived from the two-phase olive oil manufacturing process), improved the anaerobic digestion process. The mixture improved not only the methane yield, but also its biodegradability. The highest biodegradability was found in the mixture 1 R. okamurae—1 OMSW, which improved the biodegradability of the macroalgae by 12.9% and 38.1% for the OMSW. The highest methane yield was observed for the mixture 1 R. okamurae—3 OMSW, improving the methane production of macroalgae alone by 157% and the OMSW methane production by 8.6%. Two mathematical models were used to fit the experimental data of methane production time with the aim of assessing the processes and obtaining the kinetic constants of the anaerobic co-digestion of different combination of R. okamurae and OMSW and both substrates independently. First-order kinetic and the transference function models allowed for appropriately fitting the experimental results of methane production with digestion time. The specific rate constant, k (first-order model) for the mixture 1 R. okamurae- 1.5 OMSW, was 5.1 and 1.3 times higher than that obtained for the mono-digestion of single OMSW and the macroalga, respectively. In the same way, the transference function model revealed that the maximum methane production rate (Rmax) was also found for the mixture 1 R. okamurae—1.5 OMSW (30.4 mL CH4 g−1 VS day−1), which was 1.6 and 2.2 times higher than the corresponding to the mono-digestions of the single OMSW and sole R. okamurae (18.9 and 13.6 mL CH4 g−1 VS day−1), respectively.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2561
Author(s):  
Furqan Muhayodin ◽  
Albrecht Fritze ◽  
Oliver Christopher Larsen ◽  
Marcel Spahr ◽  
Vera Susanne Rotter

Rice straw is an agricultural residue produced in abundant quantities. Open burning and plowing back the straw to the fields are common practices for its disposal. In-situ incorporation and burning cause emissions of greenhouse gas and particulate matter. Additionally, the energy potential of rice straw is lost. Anaerobic digestion is a technology that can be potentially used to utilize the surplus rice straw, provide renewable energy, circulate nutrients available in the digestate, and reduce greenhouse gas emissions from rice paddies. An innovative temperature phased anaerobic digestion technology was developed and carried out in a continuous circulating mode of mesophilic and hyperthermophilic conditions in a loop digester (F1). The performance of the newly developed digester was compared with the reference digester (F2) working at mesophilic conditions. Co-digestion of rice straw was carried out with cow manure to optimize the carbon to nitrogen ratio and to provide the essential trace elements required by microorganisms in the biochemistry of methane formation. F1 produced a higher specific methane yield (189 ± 37 L/kg volatile solids) from rice straw compared to F2 (148 ± 36 L/kg volatile solids). Anaerobic digestion efficiency was about 90 ± 20% in F1 and 70 ± 20% in F2. Mass fractions of Fe, Ni, Co, Mo, Cu, and Zn were analyzed over time. The mass fractions of Co, Mo, Cu, and Zn were stable in both digesters. While mass fractions of Fe and Ni were reduced at the end of the digestion period. However, no direct relationship between specific methane yield and reduced mass fraction of Fe and Ni was found. Co-digestion of rice straw with cow manure seems to be a good approach to provide trace elements except for Se.


Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 590
Author(s):  
Aiban Abdulhakim Saeed Ghaleb ◽  
Shamsul Rahman Mohamed Kutty ◽  
Gasim Hayder Ahmed Salih ◽  
Ahmad Hussaini Jagaba ◽  
Azmatullah Noor ◽  
...  

Man-made organic waste leads to the rapid proliferation of pollution around the globe. Effective bio-waste management can help to reduce the adverse effects of organic waste while contributing to the circular economy at the same time. The toxic oily-biological sludge generated from oil refineries’ wastewater treatment plants is a potential source for biogas energy recovery via anaerobic digestion. However, the oily-biological sludge’s carbon/nitrogen (C/N) ratio is lower than the ideal 20–30 ratio required by anaerobic digestion technology for biogas production. Sugarcane bagasse can be digested as a high C/N co-substrate while the oily-biological sludge acts as a substrate and inoculum to improve biogas production. In this study, the best C/N with co-substrate volatile solids (VS)/inoculum VS ratios for the co-digestion process of mixtures were determined empirically through batch experiments at temperatures of 35–37 °C, pH (6–8) and 60 rpm mixing. The raw materials were pre-treated mechanically and thermo-chemically to further enhance the digestibility. The best condition for the sugarcane bagasse delignification process was 1% (w/v) sodium hydroxide, 1:10 solid-liquid ratio, at 100 °C, and 150 rpm for 1 h. The results from a 33-day batch anaerobic digestion experiment indicate that the production of biogas and methane yield were concurrent with the increasing C/N and co-substrate VS/inoculum VS ratios. The total biogas yields from C/N 20.0 with co-substrate VS/inoculum VS 0.06 and C/N 30.0 with co-substrate VS/inoculum VS 0.18 ratios were 2777.0 and 9268.0 mL, respectively, including a methane yield of 980.0 and 3009.3 mL, respectively. The biogas and methane yield from C/N 30.0 were higher than the biogas and methane yields from C/N 20.0 by 70.04 and 67.44%, respectively. The highest biogas and methane yields corresponded with the highest C/N with co-substrate VS/inoculum VS ratios (30.0 and 0.18), being 200.6 mL/g VSremoved and 65.1 mL CH4/g VSremoved, respectively.


Processes ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 677
Author(s):  
Muhammad Tahir Khan ◽  
Johannes Krümpel ◽  
Dominik Wüst ◽  
Andreas Lemmer

Production of bio-based materials in biorefineries is coupled with the generation of organic-rich process-wastewater that requires further management. Anaerobic technologies can be employed as a tool for the rectification of such hazardous by-products. Therefore, 5-hydroxymethylfurfural process-wastewater and its components were investigated for their biodegradability in a continuous anaerobic process. The test components included 5-hydroxymethylfurfural, furfural, levulinic acid, and the full process-wastewater. Each component was injected individually into a continuously operating anaerobic filter at a concentration of 0.5 gCOD. On the basis of large discrepancies within the replicates for each component, we classified their degradation into the categories of “delayed”, “retarded”, and “inhibitory”. Inhibitory represented the replicates for all the test components that hampered the process. For the retarded degradation, their mean methane yield per 0.5 gCOD was between 21.31 ± 13.04 mL and 28.98 ± 25.38 mL. Delayed digestion was considered adequate for further assessments in which the order of conversion to methane according to specific methane yield for each component from highest to lowest was as follows: levulinic acid > furfural > 5-hydroxymethylfurfural > process-wastewater. Disparities and inconsistencies in the degradation of process-wastewater and its components can compromise process stability as a whole. Hence, the provision of energy with such feedstock is questionable.


Sign in / Sign up

Export Citation Format

Share Document