scholarly journals Rhizosphere Mushrooms: Antagonistic Exploration of Rhizospere Mushrooms in Shallot (Allium ascolonicum L) Specific Location of Enrekang Regency

Author(s):  
Hikmahwati. Fitrianti ◽  
Harli A. Karim

Enrekang Regency is one of the largest onion plant centers in south Sulawesi with an onion harvest area of 7,605 Ha. The main disease that attacks onions in Enrekang district is stem base foul disease or moler disease caused by fusarium oxysporum f.sp.cepae (FOCe). Control can be done by using biocontrol obtained from rhizosphere mushrooms in general antagonistic and can make microenvironment conditions in the soil not suitable for pathogen growth. Exploration of the ability of rhizosphere mushroom antagonists is carried out by dual culture testing method in vitro between Fusarium oxysporum and rhizosphere mushrooms. Exploration of the antagonistic ability of rhizosphere mushrooms is carried out by dual culture testing method in vitro between Fusarium oxysporum and rhizosphere mushrooms. The test results of all isolates obtained the largest average inhibition value is 74.79% in isolate number 16, 73.19% in isolate number 5 and 63.16% in isolat number 6, the lowest inhibitory value is no. 1.56%, isolat no. 12 has and inhibition values range 50-56%, found in isolates no. 3,7,9,13 and 14.

Agronomy ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1398
Author(s):  
Vishal Gupta ◽  
Krishna Kumar ◽  
Kausar Fatima ◽  
Vijay Kumar Razdan ◽  
Bhagwati Charan Sharma ◽  
...  

Saffron (Crocus sativus L.) is considered as one of the most expensive spices. Fusarium corm rot of saffron, caused by Fusarium oxysporum, is known to cause severe yield losses worldwide. In the present study, efficacy of biocontrol agents (Trichoderma asperellum, Pseudomonas fluorescens, Pseudomonas aeruginosa, Pseudomonas putida, Bacillus stratosphericus, Bacillus pumilus, and Bacillus subtilis) along with a chemical fungicide, carbendazim, was evaluated for managing the corm rot of saffron. Under in vitro conditions, using dual culture and poison food techniques on potato dextrose agar, T. asperellum and carbendazim significantly reduced the mycelial growth of the pathogen F. oxysporum, with the inhibition of 62.76 and 60.27%, respectively, compared with control. Under field conditions, dipping of saffron corms in carbendazim and T. asperellum exhibited maximum reduction of 82.77 and 77.84%, respectively, in the disease incidence, during the first year of experiment. However, during the second year, maximum reduction in the incidence of corm rot (68.63%) was recorded with the T. asperellum. Moreover, the population density of F. oxysporum was also significantly reduced by 60 and 80.19% while using T. asperellum after 75 and 260 days of sowing of saffron corms, compared to its population before planting of corms. In case of growth promotion traits, such as sprouting and flowering, biocontrol treatments reduced the number of days (average) of sprouting and flower emergence after sowing, compared to control.


2015 ◽  
Vol 15 (1) ◽  
pp. 72
Author(s):  
Susanti Tasik ◽  
Siti Muslimah Widyastuti ◽  
Harjono .

Mechanism of parasitism of Trichoderma harzianum on Fusarium oxysporum on Acacia mangium seedlings. Fusarium oxysporum is one of the most important soil-borne fungi the causal agent of damping-off disease. Detailed information it needed to know how the pathogen can be inhibited by Trichoderma harzianum. The objective of this research was to investigate the inhibition mechanism of T. harzianum on F. oxysporum in vitro and in planta. Green Flourescent Protein (GFP) T. harzianum was used as biocontrol agent of F. oxysporum. An in vitro inhibition test of T. harzianum was performed using dual culture method. In the in planta inhibition tests, seedlings of A. mangium were applied with GFP T. harzianum two days before inoculation of F. oxysporum; GFP T. harzianum was simultaneously applied with F. oxysporum and GFP T. harzianum was applied two days after inoculation of F. oxysporum. The inhibition effect of T. harzianum GFP was observed at seven days incubation, indicated by attachment of T. harzianum to F. oxysporum hyphae. GFP T. harzianum hyphae covered the colonies of F. oxysporum at 12 days after incubation. The highest life percentage of A. mangium seedlings was found on the treatment of GFP T. harzianum two days before inoculation of F. oxysporum (82.22%), whereas the lowest life percentage was found on seedling applied with GFP T. harzianum two days after inoculation of F. oxysporum (64.44%).


2020 ◽  
Vol 4 (1) ◽  
pp. 47
Author(s):  
Fauziyyah Nahdah ◽  
Noorkomala Sari ◽  
Akhmad Rizali ◽  
Rabiatul Wahdah

<p class="Abstract">Basal plate rot is a major disease on shallot caused by <em>Fusarium oxysporum</em>. Endophytic fungi is promising to use as antagonist agent to the pathogen. Endophyte is microbes that are living in plant cells and have an asymptomatic characteristic. Nowadays, fungal endophyte is believed to produce antimicrobial substances similar with their plant host's natural product. <em>Jatropha curcas</em> is one of the plants containing secondary metabolites that have antifungal activities. The research aimed to study the ability of endophyte from <em>Jatropha curcas</em> to inhibit the growth of <em>Fusarium oxysporum</em>. The dual culture method was used in this research and the data were analyzed by SPSS software. This antagonism test was conducted by 9 isolates endophyte and each plate consisted of 3 replicates. The result revealed endophyte fungal obtaining 9 isolates with the radial growth of 4,5 cm/2 days. Endophytes of <em>Jatropha curcas</em> L. were able to inhibit the growth of <em>Fusarium oxysporum</em> C2. The percentage of inhibition of <em>Fusarium oxysporum </em>causing of root blight diseases was controlled by up 38.27 - 74.48%. The highest percentage of inhibition is gained by B4b and the lowest of it is A2b. Our observations showed that each endophyte has a consistent linear trend. B4b still leaded as the highest strength to inhibit the growth of pathogen on the monitoring of 3, 5, and 7 days. Moreover, the ability of fungi endophyte from <em>Jatropha curcas</em> as antagonist agent to <em>Fusarium oxysporum</em> needs to be further examined by the in vivo method.</p>


2020 ◽  
Vol 31 (1) ◽  
pp. 48
Author(s):  
NFN Mardhiana ◽  
Muh. Adiwena ◽  
Ankardiansyah Pandu Pradana

<em>Phytopathogenic fungi </em>Fusarium oxysporum<em> causes significant yield losses in various spices plants. The fungus can be controlled with numerous types of antagonistic bacteria. Th</em><em>is study aimed to determine the physiological characteristic and antagonistic properties of the bacterial from the roots of </em>Nepenthes mirabilis<em>, as a biological control </em><em>to </em>F. oxysforum<em>. The study was conducted at the Plant Protection Laboratory, Faculty of Agriculture, the University of Borneo, Tarakan</em><em>, from October to November 2017. Nutrient Agar medium was used to isolate antagonistic bacteria from the roots of </em>N. mirabilis<em>. Biosafety test against plants and mammals were conducted using hypersensitive and hemolysis </em><em>analysis. The bacterial isolates passed from those tests were characterized further for their phenotype and physiological properties as well as their ability to inhibit the growth of </em>F. oxysporum<em> in a dual culture test  in  vitro.  The  results  showed  that  there  were  10  out  of</em><em>26 bacterial isolates originated from </em>N. mirabilis<em> roots that were safe for plants and mammals. </em><em>Physiological tests showed  that four  isolates  could produce the proteolytic enzyme, five isolates produced the chitinolytic enzyme, six isolates were able to dissolve phosphate, and four isolates could produce HCN. Furthermore, three isolates (Mrb2, Mrb6, and Mrb16) showed inhibitory activity against </em>Fusarium<em> spp. There were differences in the phenotype character and physiological activity between the Mrb2, Mrb6, and Mrb16 isolates, but all three have the potential to inhibit </em>F. oxysporum<em>.</em>


2021 ◽  
Vol 21 (no 1) ◽  
Author(s):  
K. Vignesh ◽  
K. Rajamohan ◽  
P. Balabaskar ◽  
R. Anandan

Tomato (Solanum lycopersicum L.) is one of the most important, commercial and widely grown vegetable crop in the world. Tomato plays a critical role in nutritional food requirements, income and employment opportunities for the people. However, its production is threatened by the Fusarium wilt caused by Fusarium oxysporum f.sp. lycopersici and production losses between 30%to40%. In the present investigation an attempt has been made to study the in vitro efficacy of Pseudomonas fluorescens against Fusarium oxysporum f.sp. lycopersici. The antagonistic effect of Pseudomonas fluorescens were observed by the Dual culture technique and Agarwell method under the in vitro conditions.Among the ten isolates of Pseudomonas fluorescens, isolate Pf5 found to show the maximum percent inhibition over control (58.75%) and least mycelial growth (37.12mm) in dual culture technique against Fusarium oxysporum f.sp. lycopersici. In Agar well method isolate Pf5 proved out the maximum inhibition zone (17.47mm)against Fusarium oxysporumf.sp. lycopersici and percent inhibition over control (80.97%) at 30% concentration level.


2021 ◽  
Author(s):  
Hilda Karim ◽  
Andi Asmawati ◽  
Oslan Jumadi

Abstract Tuber rot disease due to phytopathogen Fusarium oxysporum f. sp. cepae (Foc) infection is one of the main factors causing the decreasing amount of global shallot production. This study aims to find bacteria and fungi candidates which have Foc antagonistic activity through in vitro tests using dual culture techniques. A total of five bacterial isolates and three fungal isolates isolated from the rhizosphere of healthy onion plants showed the ability to inhibit Foc growth. B1 and B4 bacterial isolates had an average inhibitory capability of 65.93% and 72.27% respectively. Whereas C1 and C2 fungal isolates have the ability to inhibit the growth of Foc by as much as 74.82% and 67.76% respectively. The four tested microbial isolates were able to significantly inhibit Foc activity in vitro based on the ANOVA test, with values α = 0.05, and n = 3. Molecular analysis based on 16S-rRNA markers showed bacterial isolates B1 and B4 have an evolutionary relationship with B. subtilis. Whereas fungi C1 and C2 have evolutionary relationships with Aspergillus tubingensis and Trichoderma asperellum respectively, based on internal transcribed spacer (ITS) gene markers. The results of this study can be used to develop indigenous microbial consortiums as biological control agents for phytopathogenic fungi Fusarium oxysporum f. sp. cepae (Foc) on shallots.


2021 ◽  
Vol 15 (1) ◽  
pp. 10-20
Author(s):  
Tsegaye Mekuria Ayele ◽  
Guesh Desta Gebremariam ◽  
Subban Patharajan

Introduction: Tomato production in Ethiopia is challenged by many pests and diseases. Fusarium wilt is one of the most important diseases of tomato affecting its productivity. Methods: Tomato tissue and soil samples were collected from tomato farmlands around Aksum town to isolate and identify pathogenic Fusarium species and Trichoderma species with biocontrol efficacy. Samples were processed in the Aksum University Biotechnology laboratory following standard procedures. Results and Discussion: Eight Fusarium and five Trichoderma isolates were obtained. Six of the Fusarium isolates were identified as Fusarium oxysporum, whereas the remaining two were Fusarium equiseti and Fusarium circinatum. Detached leaf bioassay of the F. oxysporum on tomato leaves showed leaf lesion on the tomato variety, Melka oda. The isolated Trichoderma strains were screened for biocontrol potential against virulent F. oxysporum in vitro. The Trichoderma isolate showing the highest biocontrol efficacy against the virulent Fusarium was morphologically identified as Trichoderma viride. in vitro F. oxysporum-T. viride dual culture assay demonstrated that T. viride inhibits the growth of F. oxysporum f.sp. lycopersici with 76.94% growth inhibition. Conclusion: Fusarium oxysporum is prevalent in tomato growing farmlands covered in this study. T. viride identified in this study is an effective biocontrol agent for the identified F. oxysporum fsp. lycopersici in vitro.


Agronomy ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 891
Author(s):  
Mila Santos ◽  
Fernando Diánez ◽  
Alejandro Moreno-Gavíra ◽  
Brenda Sánchez-Montesinos ◽  
Francisco J. Gea

A study was conducted to explore the efficacy of potential biocontrol agent Cladobotryum mycophilum against different phytopathogenic fungi. The growth rates of 24 isolates of C. mycophilum were determined, and their antagonistic activity was analysed in vitro and in vivo against Botrytis cinerea, Fusarium oxysporum f. sp. radicis-lycopersici, Fusarium oxysporum f.sp. cucumerinum, Fusarium solani, Phytophthora parasitica, Phytophthora capsici, Pythium aphanidermatum and Mycosphaerella melonis. Most isolates grow rapidly, reaching the opposite end of the Petri dish within 72–96 h. Under dual-culture assays, C. mycophilum showed antagonistic activity in vitro against all phytopathogenic fungi tested, with mycelial growth inhibition ranging from 30 to 90% against all the different phytopathogens tested. Similarly, of all the selected isolates, CL60A, CL17A and CL18A significantly (p < 0.05) reduced the disease incidence and severity in the plant assays compared to the controls for the different pathosystems studied. Based on these results, we conclude that C. mycophilum can be considered as a potential biological control agent in agriculture. This is the first study of Cladobotryum mycophilum as a biological control agent for different diseases caused by highly relevant phytopathogens in horticulture.


Dose-Response ◽  
2020 ◽  
Vol 18 (3) ◽  
pp. 155932582096034
Author(s):  
Rizwan Asif ◽  
Muhammad Hussnain Siddique ◽  
Shahbaz Ahmad Zakki ◽  
Muhammad Hidayat Rasool ◽  
Muhammad Waseem ◽  
...  

Cotton ( Gossypium hirsutum) wilt is one of the destructive disease caused by Fusarium oxysporum f. sp. vasinfectum and lead to 100% yield loss under favorable conditions. This study aims to estimate the potential of biological control agents Saccharothrix algeriensis NRRL B-24137 (SA) and chemical fungicides against cotton wilt pathogen under in-vitro and in-vivo conditions. The in-vitro study revealed that carbendazim showed maximum mycelia growth inhibition with a mean of 91% over control, which was further validated in glasshouse assay. In-vitro dual culture test of biocontrol agents with F. oxysporum determined that SA had a potential to inhibit mycelia growth by 68% compared to control. Further in glasshouse assay, the combination of the SA and carbendazim (10 µg/mL) showed a significant ( p < 0.05) disease control. Moreover, results demonstrated that carbendazim and SA remarkably decreased the disease development up to 83% and subsequently, significant improvement was observed in the plant growth parameters (plant length, root length, and plant weight) compared to untreated plants. Conclusively, exploration and utilization of bioagent for fungal diseases in cotton may provide a better line with maximum efficacy and with lesser adverse effects, which will pave a way toward better consequences in fungal treatments.


1975 ◽  
Vol 54 (6) ◽  
pp. 1183-1195 ◽  
Author(s):  
Joseph M. Powell ◽  
Ralph W. Phillips ◽  
Richard D. Norman

A two-body, wear-testing method was developed and the test results were used for comparing and ranking the rate of wear for an amalgam, an experimental composite resin, and a commercial composite resin. The ranking of wear found by this method was the same as that shown by clinical research for the rate of wear of amalgam and commercial composite resin.


Sign in / Sign up

Export Citation Format

Share Document