EFISIENSI PEMANFAATAN PRODUK SPIDER ART (SENI SERBUK KOPI EFISIENSI PEMANFAATAN PRODUK SPIDER ART DAN SERBUK GERGAJI) SEBAGI MEDIA LUKISAN

Author(s):  
Iretna Labibah

Abstract Efforts to manage sawdust waste have been carried out by society for filling up the daily life, including; as compost in industrial waste, mushroom growing media, a mixture of biobriquette making, improvement in the quality of used cooking oil, besides sawdust, there is also coffee pulp waste which is still rarely used by the community. Coffee grounds are no longer brewed and drunk, but are dumped in trash in general. This prompted the author to carry out an innovation using sawdust and coffee powder as the basic material for making entrepreneurial activities in the form of ART SPIDER (COFFEE POWDER AND SAWS ARTS). This research method uses literature review, observation and making paintings. The implementation procedure consists of four stages namely; preparation, implementation, marketing and reporting. The advantages of SPIDER ART products are products that are environmentally friendly, affordable prices with consumers can choose the desired frame shape and painting, and this product is suitable for use as souvenirs, gifts, or as wall decorations so that the room decor is more beautiful.Keywords: Sawdust, Coffee Dust, Art..AbstrakUpaya pengelolaan limbah serbuk gergaji sudah banyak dilakukan oleh masyarakat untuk memenuhi kehidupan sehari-hari diantaranya; sebagai kompos dalam limbah industri, media tanam jamur, campuran pembuatan biobriket, peningkatan kualitas minyak goreng bekas, selain serbuk gergaji ada juga limbah ampas kopi yang masih jarang dimanfaatkan oleh masyarakat. Ampas kopi tidak lagi untuk diseduh dan diminum, melainkan dibuang di tempat sampah pada umumnya. Hal tersebut mendorong penulis untuk melakukan sebuah inovasi menggunakan serbuk gergaji dan serbuk kopi sebagai bahan dasar pembuatan kegiatan kewirausahaan berupa SPIDER ART (SENI SERBUK KOPI DAN GERGAJI). Metode penelitian ini mengggunakan kajian literatur, observasi dan pembuatan lukisan. Prosedur pelaksanaan terdiri dari empat tahap yakni; persiapan, pelaksanaan, pemasaran dan laporan. Keunggulan dari produk SPIDER ART adalah produk yang ramah lingkungan, harga yang terjangkau dengan konsumen dapat memilih bentuk frame dan lukisan yang diinginkan, dan produk ini cocock untuk digunakan sebagai sovenir, kado, atau sebagai hiasan dinding sehingga dekorasi ruangan lebih indah. Kata Kunci: Serbuk Gergaji, Serbuk Kopi, Seni.

2019 ◽  
Vol 12 (1) ◽  
pp. 19
Author(s):  
Loth Botahala ◽  
Yanti Malailak ◽  
Herlin Silvia Maure ◽  
Hagar Karlani

The effectiveness of the absorption of activated rice husk and hazelnut shells on the purification of used cooking oil has been carried out. The aim is to determine the absorption capacity of the active charcoal of rice husk and hazelnut shells to purify used cooking oil. After being physically activated, activated charcoal from rice husk and pecan shells is applied to the purification of used cooking oil. The results show that the quality of hazelnut shell charcoal is better than rice husk after it is applied to purifying used cooking oil.


2016 ◽  
Vol 2 (1) ◽  
pp. 71-80
Author(s):  
Lisa Adhani ◽  
Isalmi Aziz ◽  
Siti Nurbayti ◽  
Christie Adi Octavia

Used cooking oil can be used as raw material for biodiesel, but the levels of free fatty acids (Free Fatty Acid, FFA) is quite high. It is necessary for pretreatment in the form of the adsorption process to reduce levels of FFA. This study aims to determine the optimal conditions of adsorption process and determine the quality of biodiesel produced from adsorption processes and transesterification. Natural zeolites are used as adsorbents activated beforehand using ammonium chloride, calcined and heated to obtain H-zeolite. Furthermore, the adsorption process optimization includes the time, the adsorbent concentration, temperature and particle size. The oil that is already in the adsorption catalyst is reacted with methanol and KOH to obtain biodiesel. The optimum adsorption conditions obtained at the time of 90 minutes, the concentration of H-zeolite 12%, temperature 90 ° C, and a particle size of 0.2 mm that can lower FFA levels from 3.2% to 1.1%. Biodiesel produced meets the quality requirements of SNI 04-7182-2006 with a water content of 0.02%, a density of 857.60 kg / m3, the acid value of 0.29 mg-KOH / g, iodine number 15.71, saponification 168 , 02 and cetane index of 75.62. Compounds contained in biodiesel are methyl 9-octadecanoic (49.45%), methyl heksadekanoat (20.79%), and methyl 9,12oktaekanoat 9.12 (18.87%). Keywords: Biodiesel, used cooking oil, adsorption, transesterification, H-zeolitDOI: http://dx.doi.org/10.15408/jkv.v2i1.3107


2020 ◽  
Vol 5 (2) ◽  
Author(s):  
Muhammad Busyairi ◽  
Aufar Za’im Muttaqin ◽  
Ika Meicahyanti ◽  
Saryadi Saryadi

This study aimed to determine the effect of reaction time and catalyst variations on the quality of biodiesel according to SNI 7182: 2015 determine the best reaction time and catalyst variations on the yield parameters, water content, viscosity, density, flash point, and methyl ester levels of biodiesel produced. Based on the research, the results show that the quality of biodiesel obtained for each parameter meets the SNI 7182: 2015 quality standards except for water content parameters that still exceed the quality standard limits. The best quality of biodiesel is shown in the variation of the reaction time of 120 minutes with KOH catalyst with a yield of 77.95%, moisture content of 0.2673%, density of 0.8669 gr/ml, the viscosity of 5.15 CST, flash point 174°C and levels of methyl esters 98.42%. Biodiesel from used cooking oil can be applied as renewable energy that is more environmentally efficient.<h1 style="margin: 0cm; margin-bottom: .0001pt; text-indent: 0cm; mso-list: none; tab-stops: 36.0pt;"><span style="mso-bidi-font-size: 11.0pt; text-transform: none; font-weight: normal; mso-bidi-font-weight: bold; mso-bidi-font-style: italic;" lang="EN-US">This study aimed to determine the effect of reaction time and catalyst variations on the quality of biodiesel according to SNI 7182: 2015 determine the best reaction time and catalyst variations on the yield parameters, water content, viscosity, density, flash point, and methyl ester levels of biodiesel produced. Based on the research, the results show that the quality of biodiesel obtained for each parameter meets the SNI 7182: 2015 quality standards except for water content parameters that still exceed the quality standard limits. The best quality of biodiesel is shown in the variation of the reaction time of 120 minutes with KOH catalyst with a yield of 77.95%, moisture content of 0.2673%, density of 0.8669 gr/ml, the viscosity of 5.15 CST, flash point 174°C and levels of methyl esters 98.42%. Biodiesel from used cooking oil can be applied as renewable energy that is more environmentally efficient.</span></h1>


2017 ◽  
Vol 3 (1) ◽  
pp. 35-43
Author(s):  
Isalmi Aziz ◽  
Nur Hijjah Bayani Fadhilah ◽  
Hendrawati Hendrawati

Production of biodiesel from used cooking oil byproducts such as crude glycerol with low purity. The crude glycerol containing compounds impurities such as free fatty acids, alcohol, soap, catalyst and water. Compound adsorption of impurities can be done with the H-zeolite as adsorbent, but the resulting quality is still not good. To improve its quality, this research was added alum (coagulation) process so that the adsorption of colloidal-sized compound impurities which can be separated from the glycerol. The purpose of this research is determine optimal condition of adsorption and coagulation impurity compounds of crude glycerol by using H-zeolite and  alum and  also determine quality of glycerol  was obtained. First, crude glycerol acidified by phosphoric acid 85% (pure analysis) until desired pH ±2.5. It was obtained purity of glycerol 72.797%. The next process is adsorption with activated H-zeolite and it obtained purity of glycerol 77.079%. The last process in this research is adsorption and coagulation by using H-zeolite and alum. The highest purity glycerol 93.803% was obtained from condition of adsorption and coagulation for 75 minutes; alum’s concentration 80 ppm; and temperature 60 ºC. The glycerol discharged from adsorption and coagulation process by using H-zeolite and alum is qualify Indonesia National Standard number 06-1564-1995 with 3.512% water content; 2.438% ash content; 0.247% MONG content; has no sugar; 1.259 g/mL density of glycerol; 0.2356% potassium content and 0.0410% aluminium content; and brighter color.DOI: http://dx.doi.org/10.15408/jkv.v0i0.5143


2021 ◽  
Vol 10 (1) ◽  
pp. 36-42
Author(s):  
Endang Su Hendi ◽  
Rusdi Rusdi ◽  
Bagja Nur Alam ◽  
Siti Nurbaeti

Cooking oil that is used repeatedly at high temperatures will reduce the quality of cooking oil. This will trigger the hydrolysis and oxidation processes that will change the characteristics of the oil, such as an increase in free fatty acid levels and peroxide numbers. Purification of used cooking oil can be carried out physically and chemically. The physical purification of oil is carried out by using adsorbents, while chemically purification process is carried out with an alkaline solution. Physically, natural materials such as zeolite can be used, where zeolite is a natural rock or mineral which chemically has a large surface area to be used in the adsorption process. Chemically with alkaline solution you can use sodium hydroxide (NaOH). In this study, used cooking oil is purified by three stages of the process, namely despicing, neutralization and bleaching to comply with the SNI quality standards. The purpose of this study was to determine the optimum operating conditions for the purification of used cooking oil in accordance with the quality standards for cooking oil. based on the results obtained by adding a NaOH concentration of 19% in the neutralization process and a zeolite concentration of 90% can reduce the acid number value of 2.4 mg NaOH/gr, the peroxide number is 7 mekO2/kg, the color degradation of used cooking oil is 51.83%.


2018 ◽  
Vol 7 (1) ◽  
pp. 41
Author(s):  
Muhammad Silmi Hi Abubakar ◽  
Siti Nuryanti ◽  
Suherman Suherman

Study on the purification and quality test of used cooking oil with turmeric has been done. This study aims to determine the quality of cooking oil after purified turmeric. The quality parameters of oil studied were the moisture content, free fatty acids (FFA), and peroxide. The methods used for determination of these parameters were gravimetry for moisture content, acid-base titration for free fatty acids, and iodometric for peroxide. The test results for water from 0.6% to 0.4% free fatty acid from 1.2% to 0.2%, and peroxide levels before and after purification were successively from and 6 meq/g to 4 meq/g, respectively. Only free fatty acids of all three parameters met the requirement of SNI.


Author(s):  
Siti Mardiyah

Anti-Oxidant Tests of starfruit and pineapple pulp on the quality of Used Cooking Oils   ABSTRACTUsed Cooking Oil is oil produced from frying residue and is carcinogenic because it causes oxidation, hydrolysis, and polymerization to produce toxic peroxides and free fatty acids that are difficult for the body to digest. Measurement of oil quality can be measured through 3 parameters, namely, the peroxide number, the acid number and the oil color. Efforts to control the quality of cooking oil are the addition of natural antioxidants, starch wuluh and pineapple pulp. Starfruit contains flavonoids, terpenoids, phenols and pectins as well as Vitamins C and A which can absorb free radicals in oil. Meanwhile, pineapple pulp contains high levels of vitamin C, flavonoids and polyphenols which can eat free radicals. This Research aims to determine the differences in the antioxidant power of starfruit and pineapple pulp to maintain the quality of used cooking oil. This research is experimental, which will study the antioxidant power of starfruit and pineapple pulp at the acid number, peroxidant and color intensity of used cooking oil. 3 grams of dry starfruit and 0.4 grams of dried pineapple pulp are added to each pad 100 mL of used cooking oil. The application of starfruit and pineapple pulp in used cooking oil had a significant effect on the 3 oil quality parameters, namely the acid number, the peroxide number and the oil color intensity, with a significance value of P <0.05. This is because the antioxidant content and composition of the two ingredients are different. Wuluh starfruit in the addition of 3 grams provides a fairly large antioxidant effect, while pineapple pulp at a concentration of 0.4 grams has shown anti-oxidant power so a higher concentration is needed to produce optimal antioxidant power. Keywords: Antioxidants, Starfruit, Pineapple Dregs


2021 ◽  
Vol 11 (3) ◽  
pp. 136-142
Author(s):  
Benedicta Evienia Prabawanti

Coffee pulp waste is one of the most significant industrial wastes today because, in the last three years, the coffee business has increased in Indonesia, especially in urban areas. Coffee pulp waste has economic value if it can use it. This study is conducted to (1) describe the interest of coffee shops in South Jakarta to provide coffee pulp waste as cosmetic raw materials, (2) to apply green marketing as a social business strategy to develop creative industries. This research is a qualitative descriptive study with a case study approach. To discover coffee shop owners' interests to utilize coffee grounds waste, data collection through interviews with 30 coffee shop owners in South Jakarta, and observation. Determine the strategy of implementing green marketing in coffee shops through the utilization of coffee grounds waste produced. The results showed that coffee shops in South Jakarta produced 1-5 kg ​​of coffee waste per day. All owners have not utilized the coffee grounds waste. The interview results showed the coffee shop owner's desire to provide coffee pulp waste produced for use as raw material for making cosmetics. Utilizing this coffee pulp waste can lead to new businesses that can be developed as creative industries. The new company is a social business that impacts solving social problems, namely creating new jobs in environmentally friendly cosmetics made from coffee grounds waste.


2018 ◽  
pp. 189-193
Author(s):  
P Purwati ◽  
Tri Harningsih

ABSTRAK Minyak digunakan secara berulangkali mengakibatkan penurunan kualitas minyak. Salah satunya adalah peningkatan asam lemak bebasnya. Limbah ampas tebu yang diubah ke dalam bentuk arang digunakan menurunkan asam lemak bebas pada minyak goreng bekas. Penambahan arang ampas tebu dengan variasi massa dapat menurunkan asam lemak bebas. Asam lemak bebas minyak bekas sebelum ditambah dengan arang ampas tebu adalah 0,62 %. Angka tersebut mengalami penurunan setelah penambahan variasi massa ampas tebu dimulai dengan 2,5 gram; 5,0 gram; 7,5 gram; 10,0 gram dan 12,5 gram. Hasil asam lemak bebas berturut-turut 0,61%; 0,55%; 0,48%; 0,45%; 0,43%. Kondisi optimum dari massa arang ampas tebu sebesar 12,5 gram. Prosentase penurunan asam lemak bebas sebesar 30,41 % dengan kadar asam lemak bebas dari sebelum dilakukan adsorbsi sebanyak 0,61% menjadi 0,43%.   Kata kunci: arang ampas tebu, asam lemak bebas, minyak goreng bekas       ABSTRACT Oils used repeatedly will result in a decrease in the quality of oil. One of which is the increase in free fatty acids. The waste bagasse which is converted into charcoal form used to lower free fatty acid in used oil casting. The addition of charcoal of bagasse with variation of mass can decrease free fatty acid. The fatty acid free of used oil before it is added with sugarcane bagasse is 0,62%. The number decreases after the addition of variation of bagasse mass begins with 2,5 grams; 5,0 grams; 7,5 grams; 10,0 grams and 12; 5 grams. Free fatty acids result are 0,61%; 0,55%; 0,48%; 0,45%; 0; 43% respectively. The optimum condition from the mass of charcoal of bagasse is 12,5 grams. Percentage of free fatty acid decrease of 30,41% with free fatty acid content from before adsorbs 0,61% to 0,43%.   Keywords: charcoal of bagasse, free fatty acids, used cooking oil


Author(s):  
Dian Wardana ◽  
Ahmad Ramadhan ◽  
Dinda Prihatini Fitri Amne ◽  
Eddiyanto Eddiyanto

The development of biodiesel which is currently increasing has helped increase glycerol as a by-product. The glycerol can be obtained from a transesterification reaction in either vegetable or animal oils or fats and even used cooking oil. Glycerol buildup without further processing can reduce the selling price of glycerol. One solution to overcome this is to convert it to surfactants such as glycerol esters which are widely used in various industries such as chemistry, food, cosmetics, medicine and textiles. This study aims to utilize used cooking oil as a source of glycerol used in the synthesis of glycerol ester surfactants, as well as to compare the quality of glycerol ester surfactants produced by the use of commercial glycerol. The process begins by isolating glycerol from used cooking oil and then purifying it to improve its quality. Then glycerol ester was synthesized by using stearic acid, palmitic acid and oleic acid at reaction times of 120, 150 and 180 minutes. The highest yield of ester glycerol produced was at the reaction time of 180 minutes for each use of fatty acids. The test results showed that the glycerol ester produced was able to reduce the surface tension of the water. The value of hydrophylic-lipophylic balance (HLB) is not much different in the range of 5, and the use of various fatty acids and different sources of glycerol results in % of the stability of different emulsions.


Sign in / Sign up

Export Citation Format

Share Document