scholarly journals Kajian Performansi Kompor Surya dengan Erythrytol Sebagai Pcm untuk Memasak Langsung dan Tidak Langsung

2018 ◽  
Vol 1 (1) ◽  
pp. 067-074
Author(s):  
Safri Gunawan ◽  
Farel Hasiholan Napitupulu ◽  
Himsar Ambarita

Menipisnya persediaan energi yang berasal dari fosil seperti minyak bumi, batu bara dan gas alam mengharuskan masyarakat beralih menggunakan energi alternatif. Dalam hal ini, Kementrian ESDM menghimbau untuk mencari dan mengembangkan energi alternatif sebagai pengganti energi konvensional. Salah satu energi alternatif yang harus dikembangkan adalah energi surya. Salah satu penggunaan energi surya dapat diaplikasikan dalam proses memasak. Tujuan penelitian ini adalah untuk mengetahui perubahantemperatur tiap titik pengukuran pada box kolektor surya dan vessel saat proses charging dan discharging, mengetahui perbandingan temperatur vessel yang menggunakan lug dan tidak menggunakan lug pada proses charging dan discharging, serta untuk mengetahui efesiensi termal box kolektor surya pada proses charging dan silinder isolator pada proses discharging dalam menjaga temperatur nasi. Pengujian pada proses charging dilakukan dengan menggunakan box kolektor berukuran 120 × 120 (cm) dan pada proses discharging menggunakan silinder isolator berukuran 30 × 45 (cm). Pada proses charging dilakukan pada pukul 10:00-16:00 WIB dan proses discharging pukul 16:00-09:00 WIB. Temperatur rata-rata proses charging untuk vessel menggunakan lug adalah 78,81 oC dan tidak menggunakan lug adalah 73,10 oC. Hal ini terjadi karena pada vessel yang menggunakan lug dapat menyerap energi panas dari sisi bawah vessel. Sedangkan efesiensi yang diperoleh box kolektor surya tertinggi adalah pada proses charging 41,54 % namun belum mampu meleburkan PCM yang memiliki temperatur lebur 120 oC karena temperatur maksimal yang mampu ditangkap box kolektor adalah 99,52 oC.   The depletion of energy supplies derived from fossils such as oil, coal and natural gas requires people to switch to use alternative energy. In this case, the Ministry of Energy and Mineral Resources calls for seeking and developing alternative energy as a replacement for conventional energy. One of alternative energy which must be developed is solar energy. Solar energy can be applied in cooking process. The purposes of this study were to determine the change in temperature of each measurement point in solar collector box and vessel during the charging and discharging process; to compare the temperature vessel using lug and not using lug on the charging and discharging process; and to determine thermal efficiency of solar collector box during the charging process and cylinder insulator in discharging process for maintaining the temperature of rice. Testing on the charging process was conducted by using collector box of 120 × 120 (cm) and in discharging process by using an insulator cylinder of 30 × 45 (cm). The charging process was done at 10:00 - 16:00 WIB and discharging process from 16:00 to 09:00 WIB. The average temperature of the charging process for vessels using lug was 78.81oC and not using lug was 73.10oC. This happens because the vessel using lug could absorb heat energy from the bottom side of the vessel. While the highest efficiency obtained by the solar collector box was on the charging process, i.e. 41.54% but had not been able to melt PCM which has melting temperature of 120oC because the maximum temperature that could be captured by the collector box was 99.52oC.

2020 ◽  
Vol 7 (1) ◽  
pp. G9-G14
Author(s):  
S. Shkrylova ◽  
V. Kostenko ◽  
I. Skrynetska

In the conditions of the global ecological crisis in the world and Ukraine, the issue of finding alternative energy sources becomes relevant. One of the most common types of renewable energy is solar energy. In Ukraine today, the most promising direction of using solar energy is its direct transformation into low-potential thermal energy. To get electric power, solar radiation is the mere alternative to electric power generated from mined fuel, and without the pollution of air and water, or adverse consequences manifested in global warming. The disadvantage of this type of installation is the limitation of the duration of light time, as well as the effect of cloudiness. During the day, the number of solar radiation changes, to stabilize it is necessary to accumulate and accumulate it for further use, the technical implementation of stable operation of solar installation due to the use of terrestrial radiation and the accumulator of a specific part of solar energy is proposed. The purpose of the work is experimental studies to ensure the stable operation of the solar collector under cloudy conditions. The paper is aimed at the stabilization of the operation of the solar installation and to obtain additional heat after the Sun’s cloud cover. The use of a solar thermal collector is advisable in solar heating and hot water systems in conditions of alternating solar radiation. The results of physical modeling have proved the efficiency of the method of combining types of thermal radiation, due to the accumulation of energy it is possible to increase the quantitative index of solar energy in the conditions of cloudiness by 3 times Keywords: alternative energy, solar energy, solar collector, thermal energy, clouds, terrestrial radiation, ecology.


2016 ◽  
Vol 6 (2) ◽  
Author(s):  
M. Wirawan ◽  
R. Kurniawan ◽  
Mirmanto Mirmanto

Recently the use of energy increases. It leads to the energy crisis. Therefore, it is important to promote alternative energy (renewable energy). One of renewable energies, which is potential in Indonesia, is solar enrgy. Solar energy can be harvested using a solar collector. This device can collect or absorb solar radiation and convert it to thermal energy. In this study, two identical collectors are used. One collector consists of 7 pipes and the other comprises 9 pipes. The overall dimension of the collector is 100 cm x 80 cm x 10 cm and the absorber of the collector is made of gravels with a mesh size of 9.5 -12.5 mm. The collectors are placed with a slope of 15o facing to North. The volumetric rates of water used in the experiments are 300 cc / min, 350 cc / min and 400 cc / min. The results show that the collector with 9 pipes is better than that with 7 pipes.


2019 ◽  
Vol 124 ◽  
pp. 05036
Author(s):  
L.V. Plotnikova ◽  
A.A. Faizullin ◽  
A.S. Gavrilov ◽  
N.M. Hacıbalayev

The description of the work of a laboratory unit for the production of thermal energy that simulates the use of solar energy and the use of wastewater energy is presented. The installation includes a heat pump, solar collector and waste water tank. Presents options forwiring elements of the unit.


Author(s):  
Afdhal Kuniawan Mainil

One of the developing technologies of renewable energy is the Salt Gradient Solar Pond (SGSP). SGSP utilize solar energy by storing its thermal energy in a pond of saline solution. Bengkulu Province has a high intensity of sunlight and a long coastline with an abundance of salt water. Therefore, it is a very suitable location for further development of SGSP technology. The design of SGSP prototype had been carried out by using a 1 m3 cylinder as the saline solution pond. The density and temperature of the solution were measured at 11 points from the bottom to the top of the cylinder. The results show that the keeper of the pond, the more density of the solution, in which the highest solution density was at the bottom of the pond, i.e., 1.206 gr/cm3. The average temperature of the solution was 44.2°C. The maximum temperature, which was 48.7 °C, was observed around the storage zone, about 0.3 m from the pond‘s bottom. The results of the measurements of salinity gradient and temperatures show that this prototype of SGSP is appropriate to be used for storing heat around the storage zone.


2011 ◽  
Vol 1 (2) ◽  
Author(s):  
Made Wirawan ◽  
Rudy Sutanto

Solar energy constitute one of potential alternative energy to develop as a back up of energy. Especially for countries in khatulistiwa location belonging to Indonesia. For use solar energy needful collector that using absorber. Using sand as a absorber make up step for increase value and profit of sand, in a economics manner the price more cheap and easy to obtain than another absorber. The analysis use sand as a alternative absorber for solar collector did for understand rate of heat transfer to acceptanceof water. Dimention of collector are 560 mm x 310 mm with thick of sand absorber 10 mm and 1.2 mm for aluminum plate as a comparator. Observation did begin 10.00 am until 14.00 pm for the two of them in the weather clear sky. The rate of water in this research are 200 cc/min, 250 cc/min and 300 cc/mn for another dan at the same time. The result of analysis be obtained heat absortion by water for solar collector with aluminum absorber more large than sand absorber. The debit of water more and more large in the collector so absorb heat by water more large because incretion the mass flow rate of water (m  ). The heat losses in the solar collector aluminum absorber more than sand absorber.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 713
Author(s):  
Yanyan Peng ◽  
Qunchao Lin ◽  
Manchao He ◽  
Chun Zhu ◽  
Haijiang Zhang ◽  
...  

In rock engineering, it is of great significance to study the failure mechanical behavior of rocks with holes. Using a combination of experiment and infrared detection, the strength, deformation, and infrared temperature evolution behavior of marble with elliptical holes under uniaxial compression were studied. The test results showed that as the vertical axis b of the ellipse increased, the peak intensity first decreased and then increased, and the minimum value appeared when the horizontal axis was equal to the vertical axis. The detection results of the infrared thermal imager showed that the maximum temperature, minimum temperature, and average temperature of the observation area in the loading stage showed a downward trend, and the range of change was between 0.02 °C and 1 °C. It was mainly due to the accumulation of energy in the loading process of the rock sample that caused the surface temperature of the specimen to decrease. In the brittle failure stage, macroscopic cracks appeared on the surface of the rock sample, which caused the energy accumulated inside to dissipate, thereby increasing the maximum temperature and average temperature of the rock sample. The average temperature increase was about 0.05 °C to about 0.19 °C. The evolution of infrared temperature was consistent with the mechanical characteristics of rock sample failure, indicating that infrared thermal imaging technology can provide effective monitoring for the study of rock mechanics. The research in this paper provides new ideas for further research on the basic characteristics of rock failure under uniaxial compression.


Horticulturae ◽  
2021 ◽  
Vol 7 (7) ◽  
pp. 165
Author(s):  
Allan Waniale ◽  
Rony Swennen ◽  
Settumba B. Mukasa ◽  
Arthur K. Tugume ◽  
Jerome Kubiriba ◽  
...  

Seed set in banana is influenced by weather, yet the key weather attributes and the critical period of influence are unknown. We therefore investigated the influence of weather during floral development for a better perspective of seed set increase. Three East African highland cooking bananas (EAHBs) were pollinated with pollen fertile wild banana ‘Calcutta 4′. At full maturity, bunches were harvested, ripened, and seeds extracted from fruit pulp. Pearson’s correlation analysis was then conducted between seed set per 100 fruits per bunch and weather attributes at 15-day intervals from 105 days before pollination (DBP) to 120 days after pollination (DAP). Seed set was positively correlated with average temperature (P < 0.05–P < 0.001, r = 0.196–0.487) and negatively correlated with relative humidity (RH) (P < 0.05–P < 0.001, r = −0.158–−0.438) between 75 DBP and the time of pollination. After pollination, average temperature was negatively correlated with seed set in ‘Mshale’ and ‘Nshonowa’ from 45 to 120 DAP (P < 0.05–P < 0.001, r = −0.213–−0.340). Correlation coefficients were highest at 15 DBP for ‘Mshale’ and ‘Nshonowa’, whereas for ‘Enzirabahima’, the highest were at the time of pollination. Maximum temperature as revealed by principal component analysis at the time of pollination should be the main focus for seed set increase.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Sierra Cheng ◽  
Rebecca Plouffe ◽  
Stephanie M. Nanos ◽  
Mavra Qamar ◽  
David N. Fisman ◽  
...  

Abstract Background Suicide is among the top 10 leading causes of premature morality in the United States and its rates continue to increase. Thus, its prevention has become a salient public health responsibility. Risk factors of suicide transcend the individual and societal level as risk can increase based on climatic variables. The purpose of the present study is to evaluate the association between average temperature and suicide rates in the five most populous counties in California using mortality data from 1999 to 2019. Methods Monthly counts of death by suicide for the five counties of interest were obtained from CDC WONDER. Monthly average, maximum, and minimum temperature were obtained from nCLIMDIV for the same time period. We modelled the association of each temperature variable with suicide rate using negative binomial generalized additive models accounting for the county-specific annual trend and monthly seasonality. Results There were over 38,000 deaths by suicide in California’s five most populous counties between 1999 and 2019. An increase in average temperature of 1 °C corresponded to a 0.82% increase in suicide rate (IRR = 1.0082 per °C; 95% CI = 1.0025–1.0140). Estimated coefficients for maximum temperature (IRR = 1.0069 per °C; 95% CI = 1.0021–1.0117) and minimum temperature (IRR = 1.0088 per °C; 95% CI = 1.0023–1.0153) were similar. Conclusion This study adds to a growing body of evidence supporting a causal effect of elevated temperature on suicide. Further investigation into environmental causes of suicide, as well as the biological and societal contexts mediating these relationships, is critical for the development and implementation of new public health interventions to reduce the incidence of suicide, particularly in the face increasing temperatures due to climate change.


2014 ◽  
Vol 592-594 ◽  
pp. 2409-2415 ◽  
Author(s):  
S. Naga Sarada ◽  
Banoth Hima Bindu ◽  
Sri Rama R. Devi ◽  
Ravi Gugulothu

In recent years with the exacerbation of energy shortage, water crisis increases around the world. With the continuous increase in the level of greenhouse gas emissions, the use of various sources of renewable energy is increasingly becoming important for sustainable development. Due to the rising oil price and environmental regulations, the demand of utilizing alternative power sources increased dramatically. Alternative energy and its applications have been heavily studied for the last decade. Energy and water are essential for mankind that influences the socioeconomic development of any nation. Pure water resources become more and more scarce every day as rivers, lakes wells and even seawater pollution rapidly increases. Solar energy is one promising solution to secure power and potable water to future generation. The process of distillation can be used to obtain fresh water from salty, brackish or contaminated water. Water is available in different forms such as sea water, underground water, surface water and atmospheric water. Clean water is essential for good health. The search for sustainable energy resources has emerged as one of the most significant and universal concerns in the 21st century. Solar energy conversion offers a cost effective alternative to our traditional usages. Solar energy is a promising candidate in many applications. Among the alternative energy sources used for electricity production, wind and solar energy systems have become more attractive in recent years. For areas where electricity was not available, stand alone wind and solar systems have been increasingly used. The shortage of drinking water in many countries throughout the world is a serious problem. Humankind has depended for ages on river, sea water and underground water reservoirs for its fresh water needs. But these sources do not always prove to be useful due to the presence of excessive salinity in the water. To resolve this crisis, different methods of solar desalination have been used in many countries. Distillation is a well known thermal process for water purification, most importantly, water desalination. Most of the conventional water distillation processes are highly energy consuming and require fossil fuels as well as electric power for their operation. Single basin solar still is a popular solar device used for converting available brackish or waste water into potable water. Because of its lower productivity, it is not popularly used. Numbers of works are under taken to improve the productivity and efficiency of the solar still. There are large numbers of PCMs that melt and solidify at wide range of temperatures, making them attractive in a number of applications. PCMs have been widely used in latent heat thermal storage systems for heat pumps, solar engineering and spacecraft thermal control applications. The use of PCMs for heating and cooling applications for buildings has been investigated within the past decade. The experimental results computed in the field of water distillation process using solar energy in the presence of energy storage materials sodium sulphate and sodium acetate are discussed in this paper. Keywords: solar energy, saline water, distillation, phase change material.


Author(s):  
E. Ogbonnaya ◽  
L. Weiss

Increasing focus on alternative energy sources has produced significant progress across a wide variety of research areas. One particular area of interest has been solar energy. This has been true on both large and small-scale applications. Research in this paper presents investigations into a small-scale solar thermal collector. This approach is divergent from traditional micro solar photovoltaic devices, relying on transforming incoming solar energy to heat for use by devices like thermoelectrics. The Solar Thermal Collector (STC) is constructed using a copper collector plate with electroplated tin-nickel selective coating atop the collector surface. Further, a unique top piece is added to trap thermal energy and reduce convective, conductive, and radiative losses to the surrounding environment. Results show a capture efficiency of 92% for a collector plate alone when exposed to a 1000 W/m2 simulated solar source. The addition of the top “glazing” piece improves capture efficiency to 97%. Future work will integrate these unique devices with thermoelectric generators for electric power production. This will yield a fully autonomous system, capable of powering small sensors or other devices in remote locations or supplementing existing devices with renewable energy.


Sign in / Sign up

Export Citation Format

Share Document