A study of the softness of household tissues using a tissue softness analyzer and hand-felt panels

TAPPI Journal ◽  
2019 ◽  
Vol 18 (3) ◽  
pp. 195-209
Author(s):  
YUAN-SHING PERNG ◽  
TSER-YING TENG ◽  
CHING-HO CHANG

This study applied the reciprocal matrix approach to deduce the correlation between hand-felt (HF) and tissue softness analyzer (TSA) instrumental measurements of tissue softness. The research was conducted in three phases, which are discussed separately. In the phase one study, results indicated that systematic collection of samples and preparation of test specimens were the foundation of successful tests. TSA-HF and tensile strength exhibited a strong negative correlation. In the future, same-unit physical properties can provide a basis for discussing the commonality and complementary natures of hand-felt and TSA softness measurements. In phase two, through the reciprocal matrix approach, subjective softness assessments performed by humans were reliably quantified. The quantified values were further applied to a statistical analysis using the t-test to distinguish and train professional panelists. In phase three of HF panel test results, all independent panels were compared to one another under a uniform scale established by four standard samples. The calibrated HF panel values were incorporated with TSA-HF results to establish technical curves between the softness and tensile strength, which were helpful for onsite workers to carry out process controls.

2018 ◽  
Vol 9 (2) ◽  
pp. 67-73
Author(s):  
M Zainul Arifin

This research was conducted to determine the value of the highest compressive strength from the ratio of normal concrete to normal concrete plus additive types of Sika Cim with a composition variation of 0.25%, 0.50%, 0.75%, 1.00%, 1.25%, 1 , 50% and 1.75% of the weight of cement besides that in this study also aims to find the highest tensile strength from the ratio of normal concrete to normal concrete in the mixture of sika cim composition at the highest compressive strength above and after that added fiber wire with a size diameter of 1 mm in length 100 mm with a ratio of 1% of material weight. The concrete mix plan was calculated using the ASTM method, the matrial composition of the normal concrete mixture as follows, 314 kg / m3 cement, 789 kg / m3 sand, 1125 kg / m3 gravel and 189 liters / m3 of water at 10 cm slump, then normal concrete added variations of the composition of sika cim 0.25%, 0.50%, 0.75%, 1.00%, 1.25%, 1.5%, 1.75% by weight of cement and fiber, the tests carried out were compressive strength of concrete and tensile strength of concrete, normal maintenance is soaked in fresh water for 28 days at 30oC. From the test results it was found that the normal concrete compressive strength at the age of 28 days was fc1 30 Mpa, the variation in the addition of the sika cim additive type mineral was achieved in composition 0.75% of the cement weight of fc1 40.2 Mpa 30C. Besides that the tensile strength test results were 28 days old with the addition of 1% fiber wire mineral to the weight of the material at a curing temperature of 30oC of 7.5%.


Polymers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 875
Author(s):  
Chenchen Luan ◽  
Qingyuan Wang ◽  
Fuhua Yang ◽  
Kuanyu Zhang ◽  
Nodir Utashev ◽  
...  

There have been a few attempts to develop prediction models of splitting tensile strength and reinforcement-concrete bond strength of FAGC (low-calcium fly ash geopolymer concrete), however, no model can be used as a design equation. Therefore, this paper aimed to provide practical prediction models. Using 115 test results for splitting tensile strength and 147 test results for bond strength from experiments and previous literature, considering the effect of size and shape on strength and structural factors on bond strength, this paper developed and verified updated prediction models and the 90% prediction intervals by regression analysis. The models can be used as design equations and applied for estimating the cracking behaviors and calculating the design anchorage length of reinforced FAGC beams. The strength models of PCC (Portland cement concrete) overestimate the splitting tensile strength and reinforcement-concrete bond strength of FAGC, so PCC’s models are not recommended as the design equations.


2021 ◽  
Vol 10 (2) ◽  
pp. 245
Author(s):  
Andrzej Sieśkiewicz ◽  
Tomasz Łysoń ◽  
Marek Rogowski ◽  
Marek Bielecki ◽  
Ewa Gindzienska-Sieskiewicz ◽  
...  

Purpose: The risk of epiphora after medial maxillectomy with lacrimal duct transection is difficult to assess. The data available in the literature are inconclusive due to various operating techniques used by the authors of medical publications, different additional procedures aimed at improving tear drainage after maxillectomy, and a variety of lacrimal duct patency assessment techniques. The aim of our work was to assess the anatomical and functional patency of lacrimal ducts after medial maxillectomy without performing additional procedures to improve tear drainage as well as comparison of the results obtained with different assessment tests. Materials and methods: 21 patients who underwent medial maxillectomy in the years 2016–2019 were assessed for discomfort and epiphora based on patients’ own reports and basic clinical examination, lacrimal duct rinse test, the Munk score, and a modified endoscopic Jones I test. Results: Gradually increasing the sensitivity of the assessment method resulted in an increase in the number of patients with potential tear drainage disorders, starting from 0% in the rinsing test, 4.8% self-reported tearing complaints, 14.3% Munk score, and 19% modified endoscopic Jones I test. Conclusions: The study results revealed that a small fraction of patients tend to report epiphora as a consequence of medial maxillectomy themselves. Subtle functional disorders, which are not particularly bothersome to patients, are more common. More sensitive lacrimal duct patency tests reveal more cases of tear drainage disorders. The results of studies assessing the incidence of epiphora after medial maxillectomy appear to depend on the type of test used.


Buildings ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 300
Author(s):  
Md. Safiuddin ◽  
George Abdel-Sayed ◽  
Nataliya Hearn

This paper presents the water absorption and strength properties of short carbon fiber reinforced mortar (CFRM) composite. Four CFRM composites with 1%, 2%, 3%, and 4% short pitch-based carbon fibers were produced in this study. Normal Portland cement mortar (NCPM) was also prepared for use as the control mortar. The freshly mixed mortar composites were tested for workability, wet density, and entrapped air content. In addition, the hardened mortar composites were examined for compressive strength, splitting tensile strength, flexural strength, and water absorption at the ages of 7 and 28 days. The effects of different carbon fiber contents on the tested properties were observed. Test results showed that the incorporation of carbon fibers decreased the workability and wet density, but increased the entrapped air content in mortar composite. Most interestingly, the compressive strength of CFRM composite increased up to 3% carbon fiber content and then it declined significantly for 4% fiber content, depending on the workability and compaction of the mortar. In contrast, the splitting tensile strength and flexural strength of the CFRM composite increased for all fiber contents due to the greater cracking resistance and improved bond strength of the carbon fibers in the mortar. The presence of short pitch-based carbon fibers significantly strengthened the mortar by bridging the microcracks, resisting the propagation of these minute cracks, and impeding the growth of macrocracks. Furthermore, the water absorption of CFRM composite decreased up to 3% carbon fiber content and then it increased substantially for 4% fiber content, depending on the entrapped air content of the mortar. The overall test results suggest that the mortar with 3% carbon fibers is the optimum CFRM composite based on the tested properties.


2015 ◽  
Vol 754-755 ◽  
pp. 1017-1022 ◽  
Author(s):  
Petrică Vizureanu ◽  
Mirabela Georgiana Minciună ◽  
Dragoş Cristian Achiţei ◽  
Andrei Victor Sandu ◽  
Kamarudin Hussin

.The paper present aspects about the obtaining of non-precious dental alloys (type CoCrMo and CoCrMoSi7), the determination of chemical composition by optical emission spectrometry and the experimental tests for determining the tensile strength, made on standard plate samples. The base material used in experiments was a commercial alloy, from CoCrMo system, which belongs to the class of dental non-precious alloys, intended to medical applications. The obtaining of studied alloy was made on arc re-melting installation, under vacuum, type MRF ABJ 900. The process followed to realize a rapid melting, with a maximum admissible current intensity. The samples for tests were obtained by casting in an electric arc furnace, under vacuum, in optimal conditions for melting and solidification and processing by electro-erosion, to eliminate all the disturbing factors which come by processing conditions for the samples. The determination of chemical composition for cobalt based alloys, by optical emission spectrometry, was made on SpectromaxX equipment with spark. The electrical discharge is made with the elimination of an energy quantity, fact which determine plasma forming and light issue. Tensile tests for standard samples, made from cobalt based alloy, was made on Instron 3382 testing machine, and assisted by computer. The obtained results are: elongation, elasticity modulus, tensile strength and offer complete information about the analyzed mechanical properties. For the certitude of obtained experimental results, the tests were made on samples with specific dimensions according ISO 6892-1:2009(E) standard, both for the tensile strength, and also machine operation.


2015 ◽  
Vol 749 ◽  
pp. 278-281
Author(s):  
Jia Horng Lin ◽  
Jing Chzi Hsieh ◽  
Jin Mao Chen ◽  
Wen Hao Hsing ◽  
Hsueh Jen Tan ◽  
...  

Geotextiles are made of polymers, and their conjunction with different processes and materials can provide geotextiles with desirable characteristics and functions, such as filtration, separation, and drainage, and thereby meets the environmental requirements. Chemical resistant and mechanical strong polymers, including polyester (PET) and polypropylene (PP), are thus used to prolong the service life of the products made by such materials. This study proposes highly air permeable geotextiles that are made with different thicknesses and various needle punching speeds, and the influences of these two variables over the pore structure and mechanical properties are then examined. PET fibers, PP fibers, and recycled Kevlar fibers are blended, followed by being needle punched with differing spaces and speeds to form geotextiles with various thicknesses and porosities. The textiles are then evaluated for their mechanical strength and porosity. The test results show that a thickness of 4.5 cm and 1.5 cm demonstrate an influence on the tensile strength of the geotextiles, which is ascribed to the webs that are incompletely needle punched. However, the excessive needle punching speed corresponding to a thickness of 0.2 cm results in a decrease in tensile strength, but there is also an increase in the porosity of the geotextiles.


2015 ◽  
Vol 60 (4) ◽  
pp. 2821-2826 ◽  
Author(s):  
A. Wierzba ◽  
S. Mróz ◽  
P. Szota ◽  
A. Stefanik ◽  
R. Mola

The paper presents the results of the experimental study of the three-layer Al-Mg-Al sheets rolling process by the ARB method. The tests carried out were limited to single-pass symmetric and asymmetric rolling processes. An Al-Mg-Al package with an initial thickness of 4 mm (1-2-1 mm) was subjected to the process of rolling with a relative reduction of 50%. To activate the shear band in the strip being deformed, an asymmetry factor of av=2 was applied. From the test results, an increase in the tensile strength of the multi-layer Al-Mg-Al sheets obtained from the asymmetric process was observed. Microhardness tests did not show any significant differences in aluminium layer between respective layers of sheets obtained from the symmetric and the asymmetric process. By contrast, for the magnesium layer, an increase in microhardness from 72 HV to 79 HV could be observed for the asymmetric rolling. The analysis of the produced Al-Mg-Al sheets shows that the good bond between individual layers and grain refinement in the magnesium layer contributed to the obtaining of higher mechanical properties in the multi-layer sheets produced in the asymmetric process compared to the sheets obtained from the symmetric process.


2014 ◽  
Vol 887-888 ◽  
pp. 824-829
Author(s):  
Qing Fang Lv ◽  
Ji Hong Qin ◽  
Ran Zhu

Laminated veneer lumber is taken as an object of study, and use LVL specimens of different sizes for compression test and tensile test. The goal of the experiment is to investigate the size effect on compressive strength and tensile strength as well as the influence of the secondary glued laminated face, which appears in the secondary molding processes. The results show that both compressive strength and tensile strength have the size effect apparently and the existence of the secondary glued laminated face lower the compressive strength of LVL specimens. Afterwards, the relationship between compressive strength and volume along with tensile strength and area are obtained by the test results.


2021 ◽  
Vol 410 ◽  
pp. 299-305
Author(s):  
Artem S. Atamashkin ◽  
Elena Y. Priymak ◽  
Elena A. Kuzmina

In this work, pipe billets with a diameter of 73 mm and a wall thickness of 9 mm from steels 32G2 and 40KhN are friction welded with an aim to optimize the process parameters. The friction pressure, the forging pressure and the length of the fusion varied. After the implementation of various welding modes, tensile tests and metallographic studies were carried out. The optimal welding parameters have been established, which make it possible to obtain tensile strength at the level of the 32G2 base metal. The study results of the microstructure and SEM fractographs after the optimal welding mode are presented.


2018 ◽  
Vol 1 (2) ◽  
pp. 149-158
Author(s):  
Zulfetriani Zulfetriani

Basic education aims to provide basic skills to learners to develop their lives as individuals, community members, citizens and members of the human race and prepare learners to follow the next education. Primary education is organized to develop skills attitudes and provide the basic knowledge and skills necessary to live in communities and prepare learners who are eligible for secondary education (UU Sisdiknas No. 20 Year 2003 article 13). In teaching and learning activities, a teacher would have hope of desire for learners can get the maximum value possible, in accordance with the learning objectives created or desired but what can be in word, reality. For special mathematics subjects, field findings such as EBTANAS, summative test results and daily test scores and report scores indicate that the learners' learning outcomes are still below the numbers that may be unsatisfactory in both low and class high. From some study results and opinions of experts, the low mathematics learning outcomes of students is not because they are not able to perform calculations, but because they do not understand the problems contained in the problem. Hudoyo (in Laily Hasbullah: 2000: 1) states that questions related to numbers are not so difficult for learners, but the problems that use sentences are very difficult for learners who have less or less ability.  


Sign in / Sign up

Export Citation Format

Share Document