EFFECT OF THE APPLICATION OF GOAT DUNG ON THE BIOREMEDIATION OF POLLUTED SOIL BY HYDROCARBON DEGRADING BACTERIA: A MICROCOSM STUDY

2021 ◽  
Vol 5 (1) ◽  
pp. 278-287
Author(s):  
I. F. Ogujoifor ◽  
D. A. Machido ◽  
Habiba I. Atta

Biostimulation is an effective means of enhancing bioremediation of toxic compounds. In this study, goat dung was used as an additional source of nutrients to improve the degradation of petroleum hydrocarbons in a heavily contaminated soil. Soil samples collected from a mechanic workshop in Zaria, Nigeria, was subjected to microcosm studies in a screen house and three proportions (2%w/w, 3%w/w, 4%w/w kg-1.soil) of goat dung added to the soil samples. The effect of the addition of nutrients from the goat dung on the hydrocarbon degrading bacterial community in the soil was determined by measuring the hydrocarbon utilizing bacterial counts, percentage degradation of hydrocarbon and biostimulation efficiency. At the end of the seven-week experiment, it was observed that 4% w/w of goat dung had the highest hydrocarbon utilizing bacterial count but, the maximum percentage hydrocarbon degradation occurred in the treatment with 2% w/w goat dung and biostimulation efficiency was optimum with both 2% w/w and 4% w/w goat dung. Nutrient addition can be an effective tool during bioremediation, however, laboratory scale studies should be conducted prior to field studies in order to achieve maximum results

2019 ◽  
Vol 2 (1) ◽  
pp. 1
Author(s):  
Pankaj Kumar Jain

Petroleum oil contains a large number of poly cyclic hydrocarbons (PAH's) that are toxic to living beings. The complete degradation of petroleum oil required a population of microorganisms in the soil. In the present investigation petroleum oil contaminated soil samples were incubated with four bacterial strains (Mycobacterium sp., Pseudomonas aeruginosa, Alcaligenes faecalis and Enterobacter cloacae) to study the bioremediation efficacy. The soil samples were analyzed for soil reaction (pH), soil moisture content, soil organic carbon (SOC), available phosphorus (P), total petroleum hydrocarbon content (TPH), total bacterial count (TBC) and total petroleum degrading bacteria at the interval of 0 days (initial), 2 weeks, 4 weeks, 6 weeks and 8 weeks prior and after treatment by bacteria. Values obtained reveals that there was a clear modulating effect of bacteria on above determinations. Maximum decrements in TPH (86%), soil pH (18.2%) and SOC (40%) were recorded in Pseudomonas aeruginosa inoculated samples.


Author(s):  
Zaid Raad Abbas ◽  
Aqeel Mohammed Majeed Al-Ezee ◽  
Sawsan H

This study was conducted to explore the ability of Pseudomonas fluorescens and Bacillus cereus to solubilizing a phosphate in soil for enhancing the planting growth and, its relation with soill characterization. The isolates were identified as P.fluorescens and B. cereus using convential analysis and, its phosphate solubilization ability and sidrophore was shown by the clear zone formation on National Botanical Research Institute���s Phosphate medium. Moreover, Pseudomonas fluorescens isolates (n = 9) and three of B. cereus isolated from agricultural area in Baghdad university, Mustansiriyah university and Diyala bridge. Results displayed that bacterial count were varied in soil samples according to their region, and ranging from 30 to 60 *10 2 CFU/g in Baghdad university soil to 10���20 *10 2 CFU/g in Mustansiriyah university soil, the Baghdad soil macronutrient which included: NH4, NO3, P, and K were, 8.42, 20.53, 19.09, 218.73 respectively, While the physio analysis revealed that the mean of pH was 7.3 and EC was 8.63. on the other hand the micronutrient analysis indicated that the soil samples were included Ca, Fe, Mn, Zn and Cu which gave their mean 5025.9, 8.9, 4.9, 0.5 and 1.5 respectevily. Results revealed that all isolated bacteria (9 isolates of P.fluorescens and three isolates of B. cereus gave ahalo zone which mean their ability to be phosphate solubilizing bacteria at 100%. Results revealed that all isolated bacteria were detected a ability to produce high levels from chelating agents (siderophores)) by P.fluorescens and. B cereus at 100%, when appeared ahalo clear zone. Furthermore, the high levels of phosphate solubilization and siderophore production were grouped in bacterial species isolated from Iraqi soils. might be attributed to many soil factors such as soil nutrient status, soil acidity, water content, organic matter and soil enzyme activities.


2014 ◽  
Vol 32 (3) ◽  
pp. 507-513
Author(s):  
R.O. Adereti ◽  
F.O Takim ◽  
Y.A. Abayomi

An experiment was laid down in a screen house to determine the distribution of weed seeds at different soil depths and periods of cultivation of sugarcane in Ilorin, Nigeria. Soil samples from different depth levels (0-10 cm, 11-20 cm and 21-30 cm) were collected after harvesting of canes from three different land use fields (continuous sugarcane cultivation for > 20 years, continuous sugarcane cultivation for < 10 years after long fallow period and continuous sugarcane cultivation for < 5 years after long fallow period) in November, 2012. One kilogram of the sieved composite soil samples was arranged in the screen house and watered at alternate days. Germinating weed seedlings were identified, counted and then pulled out for the period of 8 months. Land use and soil depth had a highly significant (p £ 0.05) effect on the total number of weeds that emerged from the soil samples. The 010 cm of the soil depth had the highest weed seedlings that emerged. There was an equal weed seed distribution at the 11-20 cm and 21-30 cm depths of the soil. Sugarcane fields which have been continuously cultivated for a long period of time with highly disturbing soil tillage practices tend to have larger seed banks in deeper soil layers (11-20 cm and 21-30 cm) while recently opened fields had significantly larger seed banks at the 0-10 cm soil sampling depth.


Total petroleum hydrocarbons pollution of soil samples randomly collected from three Nigeria Universities in Port Harcourt due to the use of heavy-duty diesel generators was studied to ascertains the level of concentration of the different hydrocarbons’ categories. The soil samples were collected at two different depths of 0.00-0.50m and 0.50-1.00m. The Universities were Ignatius Ajuru University of Education (IAUE), Rivers State University (RSU) and University of Port Harcourt (UNIPORT). The different total petroleum hydrocarbons categories were Gasoline Range Organics (GRO), Diesel Range Organics (DRO) and Lube Oil Range. Soxhlet extraction method was used in extracting the samples and due column clean-up was performed for chromatographic analysis. Gas Chromatography-Flame Ionization Detector was used to determine the level of concentrations of the different categories of total petroleum hydrocarbons. The results showed that at 0.00-0.50m depth, IAUE was 4.42145, 945.4784, and 525.66919 mg/Kg for GRO, DRO and lube oil range respectively, RSU was not detected, 494.44799 and 458.6715 mg/Kg for GRO, DRO and lube oil range respectively and UNIPORT was 4.40920, 501.2246 and 467.71426 mg/Kg for GRO, DRO and lube oil range respectively. At 0.50-1.00m depth IAUE was 2.75132, 596.35126, and 311.84451 mg/Kg for GRO, DRO and lube oil range respectively, RSU was not detected, 298.06899 and 270.61619 mg/Kg for GRO, DRO and lube oil range respectively and UNIPORT was 2.77780, 301.74701 and 276.88684 mg/Kg for GRO, DRO and lube oil range respectively. The level of soil contamination Showed that GRO > DRO > lube oil range. The observation showed that hydrocarbon pollution decreased with increase in depth. The level of DRO and lube oil range in the studied areas exceeded the limit acceptable and therefore adequate steps should be taken to remedy the situation so that it will not pose any health hazard to the workers operating the heavy-duty generators.


Author(s):  
Kent McKnight ◽  
Kimball Harper ◽  
Karl McKnight

The primary overall objective of inventorying the macrofungi growing in and around Grand Teton and Yellowstone National Parks was partially achieved with the published checklist (McKnight 1982) and additions from the 1982 Research Center Annual Report (McKnight, Harper, & McKnight 1984). The intensive collecting of the 1982 fruiting season including a 12-week phenological study at 11 selected sites left many species unidentified and numerous others observed but not collected, or with inadequately annotated collections made. Litter and soil moisture data for the 11 study stands are also given in the 1982 annual report cited above, as well as data on 15 overstory and understory vegetation and soil parameters. Field studies in the Parks during the summer of 1983 concentrated on (1) identification of chlorophyllous and vascular plants at the 11 sites selected for concentrated study in 1982; (2) quantitative estimates of chlorophyllous plant cover and height; (3) estimates of site quality; (4) collections of composite soil samples; and (5) additional records of macrofungi for the Parks with supporting data in the form of photographs, drawings, and annotations.


2020 ◽  
Vol 2 (10) ◽  
pp. 5-10
Author(s):  
Ishita Agrawal

It is widely known that petroleum hydrocarbons constitute one of the most hazardous pollutants that affect human and environmental health. The ongoing research on bioremediation with petroleum hydrocarbon-degrading bacteria has shown tremendous promise of the technology due to its advantages of high efficiency and eco-friendly nature. To this end, studies have been carried out to identify a large amount of bacterial species with petroleum hydrocarbon-degrading ability for applications in bioremediation. Here, we present a brief perspective of some of the notable advances in oil degrading bacteria and the remedial actions for decontamination of water and soil along with recovering the spilled materials at oil sites.


2019 ◽  
Vol 33 (11) ◽  
pp. 11373-11379 ◽  
Author(s):  
Ke Shi ◽  
Jianliang Xue ◽  
Xinfeng Xiao ◽  
Yanlu Qiao ◽  
Yanan Wu ◽  
...  

2005 ◽  
Vol 48 (spe) ◽  
pp. 249-255 ◽  
Author(s):  
Sandro José Baptista ◽  
Magali Christe Cammarota ◽  
Denize Dias de Carvalho Freire

The aim of the present work was to evaluate the biodegradation of petroleum hydrocarbons in clay soil a 45-days experiment. The experiment was conducted using an aerobic fixed bed reactor, containing 300g of contaminated soil at room temperature with an air rate of 6 L/h. The growth medium was supplemented with 2.5% (w/w) (NH4)2SO4 and 0.035% (w/w) KH2PO4. Biodegradation of the crude oil in the contaminated clay soil was monitored by measuring CO2 production and removal of organic matter (OM), oil and grease (OandG), and total petroleum hydrocarbons (TPH), measured before and after the 45-days experiment, together with total heterotrophic and hydrocarbon-degrading bacterial count. The best removals of OM (50%), OandG (37%) and TPH (45%) were obtained in the bioreactors in which the highest CO2 production was achieved.


2009 ◽  
Vol 23 (3) ◽  
pp. 331-334 ◽  
Author(s):  
Nader Soltani ◽  
Christy Shropshire ◽  
Peter H. Sikkema

Saflufenacil (BAS 800H) is a new herbicide being developed by BASF for PRE broadleaf weed control in corn. Field studies were conducted at two Ontario locations in 2006 and 2007 to evaluate the tolerance of field corn to PRE and POST (spike and two- to three-leaf corn) applications of saflufenacil at 50, 100, and 200 g ai/ha with and without an adjuvant (surfactant blend + solvent [petroleum hydrocarbons]; 1% v/v). Saflufenacil applied PRE reduced corn height by as much as 12% with the highest rate of 200 g/ha; however, corn yield was not affected. When saflufenacil was applied without an adjuvant to corn at the spike stage, injury was as much as 12%, 7 d after treatment (DAT). However, corn height and yield were not affected. Saflufenacil applied POST to two- to three-leaf corn at 50 to 200 g/ha without an adjuvant resulted in as much as 25% injury and reduced corn height 31% but did not affect yield. Adding an adjuvant to POST applications of saflufenacil caused as much as 4 and 99% injury, reduced corn height 13 and 77%, and reduced corn yield 0 and 59% when applied to corn at the spike and at the two- to three-leaf stages, respectively. Based on these results, saflufenacil applied PRE can be safely used in corn at rates up to 200 g/ha. Saflufenacil applied to corn at the spike and two- to three-leaf stage at 50 or 100 g/ha without an adjuvant demonstrated acceptable corn tolerance and may allow for the use of saflufenacil beyond the proposed PRE use pattern. In contrast, applying saflufenacil POST with an adjuvant to spike and two- to three-leaf stage corn resulted in unacceptable injury and yield losses in field corn.


2016 ◽  
Vol 29 (2) ◽  
pp. 84-88
Author(s):  
A Hakim ◽  
S Hoque ◽  
SM Ullah

Ten effluent samples from two different sites located at Hazaribagh tannery belt and Dhaka EPZ, Savar were collected. This study aimed to compare the bacterial composition isolated from tannery and textile effluents and to investigate the occurrence of metal toxicity tolerant and dye degrading bacteria and to select the potential strains for the use in bioremediation. The average bacterial count of HT and DETDE varied in between 3.35×106 and 5.45×106 cfu/mL and 4.8×106 and 7.75×106cfu/mL, respectively. A total of 12 bacterial isolates were characterized as strains of Bacillus, Staphylococcus, and Pseudomonas. A few, however, were re-cultured on other recommended media for verification of diagnostic characteristics. Maximum numbers of bacterial species were isolated from textile effluent. The results showed that a Gram-positive bacillus with a yellow pigment was considered as a major group of the population. Among them three isolates were identified based on alignments of partial sequence of 16S rRNA gene. These are also being used in different wastewater and metal treatment plants all over the world.Bangladesh J Microbiol, Volume 29, Number 2, Dec 2012, pp 84-88


Sign in / Sign up

Export Citation Format

Share Document