scholarly journals Menentukan Kualitas Hasil Perbaikan Beton Bangunan Dermaga Dengan Metode Inspeksi Teknik

2017 ◽  
Vol 6 (1) ◽  
pp. 23-29
Author(s):  
Sulardi Sulardi

The research objective was to provide an overview of the engineering inspection methods used in determine the quality of repair results and the quality of the results of concrete repair based on the results of concrete repair what has been done. The research method is carried out by engineering inspection methods which include visual tests and rebar test of concrete surface, compressive strength test with hammer test, test for concrete homogeneity with UPV test, test profometer concrete thickness blanket, cast drilled concrete core sampling, tensile test and concrete connection carbonation test of concrete surfaces with phenopthalein solution. The results of the research are chipping and grouting with specifications of microconcrete flowable material and repaired concrete surface protection with a thick mastic shield coating material specifications min. 300 micron DFT has been proven improve the strong quality of existing concrete by 69.40% from the compressive strength of the installed concrete design. Method Technical inspection, repair methods and specifications of the material used can be replicated for repairs damage and to determine the quality of similar repairs elsewhere.

BANGUNAN ◽  
2020 ◽  
Vol 25 (1) ◽  
pp. 41
Author(s):  
M. Abdul Aziz Kurniawan ◽  
Eko Suwarno ◽  
Boedya Djatmika

Abstrak:Ceiling brick buangan paper sludge salah satu alternatif membuat pelat lantai, secara ekonomis lebih murah dan memiliki kuat tekan setara dengan beton konvensional K300. Penelitian ini menggunakan metode eksperimen. Terdapat dua jenis benda uji yang digunakan yaitu berbentuk kubus dengan ukuran 5 cm x 5 cm x 5 cm untuk mengetahui kualitas bahan ceiling brick dan benda uji berbentuk produk ceiling brick untuk mengetahui kualitas produk ceiling brick. Variasi paper sludge yang digunakan adalah 2, 4, 6, dan 8 persen. Satu benda uji dilakukan dua pengujian yaitu uji fisik (rembesan air) dan mekanik (kuat tekan). Metode penelitian menggunakan analisa statistik One Way dan dilanjutkan analisis Tukey. Hasil dari penelitian ini adalah (1) Kuat tekan produk ceiling brick dengan campuran paper sludge berurut-urut 0, 2, 4, 6, dan 8 persen sebesar 8.43 MPa, 9.39 MPa, 11.28 MPa, 10.31 MPa, dan 8.30 MPa. Nilai rata-rata rembesan air produk ceiling brick dengan variasi berurut-urut 0%,2%, 4%, 6%, dan 8%, yaitu sebesar 0.35 ml/menit, 0.37 ml/menit, 0.35 ml/menit, 0.42 ml/menit, dan 0.36 ml/ menit. (2) Kuat tekan mortar kubus ceiling brick dengan campuran paper sludge berurut-urut 0, 2, 4, 6, dan 8 persen sebesar 105.66 MPa, 112.67 MPa, 104.20 MPa, 98.55 MPa, dan 105.24 MPa. Rembesan air mortar kubus ceiling brick dengan variasi berurut-urut 0, 2, 4, 6, dan 8 persen, yaitu sebesar 0,59 ml/menit, 0,54 ml/menit, 0,46 ml/menit, 0,27 ml/menit, dan 0,28 ml/menit. (3) Uji kuat tekan dan rembesan air terhadap produk ceiling brick yang telah dicampur paper sludge mengalami perbedaan tetapi tidak signifikan. (4) Uji kuat tekan terhadap mortar kubus ceiling brick yang dicampur paper sludge mengalami perbedaan tetapi tidak signifikan. Sedangkan uji rembesan air tehadap mortar kubus ceiling brick yang dicampur paper sludge mengalami perbedaan yang signifikan. (5) Campuran paper sludge 4 persen pada produk ceiling brick dan campuran paper sludge 2 persen pada mortar kubus ceiling brick menghasilkan kuat tekan optimum.Kata-kata kunci: paper sludge, limbah kertas, ceiling brick, sifat fisik & mekanikAbstract: Paper sludge ceiling bricks are an alternative to making floor plates, are economically cheaper and have compressive strength equivalent to conventional K300 concrete. This research is using experimental method. There are two types of specimens used which are cube shaped with a size of 5 cm x 5 cm x 5 cm to determine the quality of ceiling brick material and specimens in the form of ceiling brick products to determine the quality of ceiling brick products. Paper sludge variations used are 0, 2, 4, 6, dan 8 percent. One test object was carried out two tests, namely physical test (water seepage) and mechanical (compressive strength). The research method uses One Way statistical analysis and Tukey analysis continues. The results of this study are (1) Compressive strength of brick brick products with a mixture of paper sludge in sequence of 0, 2, 4, 6, dan 8 percent at 8.43 MPa, 9.39 MPa, 11.28 MPa, 10.31 MPa and 8.30 MPa. The average seepage value of ceiling brick products with sequential variations of 0, 2, 4, 6, dan 8 percent which is 0.35 ml / minute, 0.37 ml / minute, 0.35 ml / minute, 0.42 ml / minute minutes, and 0.36 ml / minute. (2) Compressive strength of ceiling brick cube mortar with a mixture of paper sludge in a sequence of 0, 2, 4, 6, dan 8 percent by 105.66 MPa, 112.67 MPa, 104.20 MPa, 98.55 MPa and 105.24 MPa. Mortar cube ceiling water seepage with sequential variations of 0, 2, 4, 6, dan 8 percent in the amount of 0.59 ml / minute, 0.54 ml / minute, 0.46 ml / minute, 0.27 ml / minute, and 0.28 ml / minute. (3) The compressive strength and water seepage tests on ceiling brick products that have been mixed with paper sludge experience differences but are not significant. (4) Compressive strength test of ceiling brick cube mortar mixed with paper sludge is different but not significant. While the water seepage test of ceiling brick cube mortar mixed with paper sludge experienced a significant difference. (5) 4 percent paper sludge mixture in ceiling brick products and 2 percent paper sludge mixture in ceiling brick cube mortars produce optimum compressive strength.Keywords: paper sludge, waste paper, ceiling brick, physical & mechanical properties


Jurnal CIVILA ◽  
2021 ◽  
Vol 6 (2) ◽  
pp. 213
Author(s):  
Asrul Majid ◽  
Hammam Rofiqi Agustapraja

Infrastructure development is one of the important aspects of the progress of a country where most of the constituents of infrastructure are concrete. The most important constituent of concrete is cement because its function is to bind other concrete materials so that it can form a hard mass. The large number of developments using cement as a building material will leave quite a lot of cement bags.In this study, the authors conducted research on the effect of adding cement waste to the compressive strength of concrete. This study used an experimental method with a total of 24 test objects. The test object is in the form of a concrete cylinder with a diameter of 15 cm and a height of 30 cm and uses variations in the composition of the addition of cement waste cement as a substitute for fine aggregate, namely 0%, 2%, 4% and 6%. K200). The compressive strength test was carried out at the age of 7 days and 28 days.The test results show that the use of waste as a partial substitute for fine aggregate results in a decrease in the compressive strength of each mixture. at the age of 7 days the variation of 2% is 16.84 MPa, 4% is 11.32 MPa and for a mixture of 6% is 6.68 MPa. Meanwhile, the compressive strength test value of 28 days old concrete in each mixture decreased by ± 6 MPa. So the conclusion is cement cement waste cannot be used as a substitute for fine aggregate in fc 16.6 (K200) quality concrete because the value is lower than the specified minimum of 16.6 MPa.


2020 ◽  
Vol 12 (2) ◽  
pp. 89
Author(s):  
Masbuhin Masbuhin

This study aims to determine the process of utilizing Sidoarjo Mud (LUSI) as a substitute for paving blocks and to determine the results of the compressive strength test of using LUSI as a substitute for paving blocks. The LUSI substitution is expected to be able to provide innovations in the construction of a paving block mixture. The research method used is the experimental method. The manufacture of test objects starts from the preparation stage, mix design, manufacture of test objects, testing and classifying paving blocks according to SNI 03-0691-1996. The sample of specimens used normal mix design and mix design substitute LUSI 40% of the fine aggregate value. Based on the results of research, paving blocks with a normal mix design of 1Pc: 2Ps are classified as quality A, 1Pc: 3Ps and 1Pc: 4Ps are classified as B quality, while for paving blocks substituting LUSI in a mixture of 1Pc: 2Ps is classified as quality B, for a mixture of 1Pc: 3Ps and 1Pc : 4Ps is classified as C quality. It can be concluded that the compressive strength of paving blocks has decreased in compressive strength after being substituted by LUSI, with a successive percentage value of 32%, 59% and 58%.


Author(s):  
Masri A Rivai ◽  
Zainul Bahri ◽  
Aziiz Yudhatama

The use of additional materials as a mixture in the manufacture of concrete is progressive. The materials used are also increasingly varied, depending on the expected results, the added material that will hopefully achieve the expected quality of the concrete is f'c 24.9 MPa This research aims to increase the percentage of concrete increase in the percentage of addition of sugar cane dust and palm shell ash.This research uses cylindrical specimens with a total of 42 specimens consisting of 2.5% and 5% bagasse ash and 0, 2.5%, 5%, 7.5%, and 10% palm shell ash as materials. alternative to the strength of the compressive strength test concrete for 28 days.Based on the results of testing the compressive strength of cylindrical concrete, it is concluded that the increase in compressive strength is the largest. can be obtained 5% bagasse ash and 5% palm shell ash with a characteristic value of f'C 26.31 Mpa for 28 daysKeywords: Concrete, bagasse ash, palm shell ash, compressive strength


2020 ◽  
Vol 4 (2) ◽  
Author(s):  
Rachmat Mudiyono

<p class="abstract">At this time the manufacture of products using waste has been developed. One of them is a cone block. In this study, the addition of green glass powder material will be carried out in order to determine the effect on the quality of the cone block. The addition of green glass powder aims to determine the difference in compressive strength against the conventional model cone block. The silica content contained in green glass powder is in the form of pozzolanic substances, a substance in the form of a cement-like content and can replace cement. This study modified the cone block with a mixture of green glass powder from a percentage of 8%, 10% and 15%.</p>Penbased on previous research which states that the addition of more than 10% silica will affect the cone block structure. Tests carried out on cone blocks, namely the compressive strength test. The results of the cone block research on the compressive strength test, in general, the mixed cone block of 8%, 10% and 15% compressive strength decreased due to the slowing of the binding process due to the reduction of the cement element except for the cone block aged 14 days with a mixture percentage of 8% which had an increase.


2021 ◽  
Vol 3 (1) ◽  
pp. 61-71
Author(s):  
O. I. Akpokodje ◽  
◽  
G. G. Agbi ◽  
H. Uguru ◽  
O. Nyorere ◽  
...  

The mechanical properties of sandcrete block greatly influenced the durability of structures built from it. This study was carried out to assess the compressive strength of sandcrete blocks produced in two major developmental and rapidly urbanizing zones of Delta State, Nigeria. 150 and 225 mm sandcrete blocks were sampled from 18 blocks moulding factories in Ndokwa East and Ughelli North Local Government Areas of Delta State, Nigeria. Five sandcrete block was sampled from each block moulding factory, at the rate of 9 factories per Local Government Area. The compressive strength of the sampled blocks was determined in accordance with the ASTM International standards. The results of compressive strength test showed that the compressive strengths of the blocks, regardless of the block size ranged from 0.61 to 16.19 MPa. Analysis of the results revealed that apart from the customized blocks, the compressive strengths of all the other blocks fell below the Nigerian Industrial Standard (NIS) recommendations of 2.5 MPa for non-load bearing walls. The general poor quality of the sandcrete blocks is attributed particularly to the poor mix ratios adopted by the block producers which fell short of NIS recommendations. Thus, this study recommended that standard regulatory agencies should closely monitor all the block making factories in the state, to ensure that sandcrete blocks produced or brought into the state met NIS recommendations


2013 ◽  
Vol 834-836 ◽  
pp. 749-754 ◽  
Author(s):  
Li Wei Teng ◽  
Ran Huang ◽  
Si Yu Zou ◽  
Hui Mi Hsu

This study was aimed to evaluate the protection effectiveness of various concrete surface treating materials. Four types of surface treating materials and six parameters were selected. Compressive strength test, absorption test and permeability test were performed. Taguchi method was adopted to identify the key factors influencing the protection effectiveness provided by the surface treatment. L16(81Î26) orthogonal array was chosen to reduce the number of experiments. The major sequentially influential factors are type of coating material, w/c ratio of concrete substrate and coating thickness.


2015 ◽  
Vol 754-755 ◽  
pp. 400-405 ◽  
Author(s):  
Ridho Bayuaji ◽  
Muhammad Sigit Darmawan ◽  
Boedi Wibowo ◽  
Nur Ahmad Husin ◽  
Srie Subekti ◽  
...  

This study is conducted to determine the effect of four variables on compressive strength of geopolymer concretes. These four variables are binder/aggregate, Alkalinene/fly ash, effect of superplasticizer (SP) addition and curing system. The compressive strength is important mechanical properties for construction material. Taguchi experimental design method is used to compile the concrete composition of geopolymer to achieve the maximum compressive strength. Specimens concrete used is a cylinder with 100 mm diameter and 200 mm height. Compressive strength test is performed at 28 day using SNI 03-6825-2002, Indonesian National Standard. This study concludes that the chloride environment has a beneficial effect on the compressive strength of the concrete. In addition, the Alkalinene/fly ash ratio and binder/aggregate give a significant effect on the compressive strength of geopolymer concretes.


2018 ◽  
Vol 8 (1) ◽  
pp. 32-41
Author(s):  
Muhamad Nasrulloh,

Concrete is a building material widely used in construction projects. In principle to create concretewith very good quality by the quality of its constituents of fine aggregate (sand), coarse aggregate,semen, and air, and the way it works. The fine aggregate (sand) as the base material for concretemanufacture is required in determining the quality of the concrete, since the aggregate is a fillerbound by cement and water into a solid mass, the quality of fine aggregate luminaire (sand) directlyaffects the quality of the concrete. The fine aggregate (sand) used in this study came from 3samples in Blitar area, ie 1 sample from Kelud mountain, 2 samples from Kali Putih, and 3 samplesfrom Brantas River. Location of research at the Laboratory Structural Civil Engineering UniversityTribhuwana Tunggadewi Malang. The method used in this study using laboratory experiments andguided on SNI 03-06912000. After a fine aggregate study of 3 samples in Bitarit obtained theaverage compressive strength test, samples of 1 fine aggregate (sand) of Kelud mount recordedaverage of concrete compressive strength of 7,802 Mpa (highest), sample 2 of fine aggregate ( sand)of Kali Putih resulted in average concrete strength test of 3.208 Mpa (lowest), and a sample of 3 fineaggregate (sand) of Brantas river yielded average concrete strength test of 3,272 MPaBeton merupakan material bahan bangunan yang banyak dipergunakan dalam pelaksanaan proyekkonstruksi. Pada prinsipnya untuk mendapatkan beton dengan kualitas yang baik sangatdipengaruhi oleh kualitas dari bahan – bahan penyusunnya yaitu agregat halus (pasir), agregat kasar,semen, dan air, serta cara pengerjaannya. Agregat halus (pasir) sebagai bahan dasar untukpembuatan beton memegang peranan penting dalam menentukan mutu beton, karena agregatmerupakan bahan pengisi yang diikat oleh semen dan air menjadi massa padat, sehingga kualitasagregat halus (pasir) mempengaruhi langsung terhadap mutu beton. Agregat halus (pasir) yangdibahas pada penelitian ini berasal dari 3 sampel di wilayah Blitar, yaitu sample 1 dari gunung Kelud,sampel 2 dari kali Putih, dan sampel 3 dari sungai Brantas. Lokasi penelitian di LaboratoriumStruktur Teknik Sipil Universitas Tribhuwana Tunggadewi Malang. Metode yang digunakan dalampenelitian ini menggunakan eksperimen laboratorium dan berpanduan pada SNI 03-06912000.Setelah dilakukan penelitian agregat halus dari 3 sampel diBlitar mendapatkan hasil uji kuat tekanrata -rata yaitu, sample 1 agregat halus (pasir) gunung Kelud menghasilkan rata – rata uji kuat tekanbeton sebesar 7,802 Mpa (tertinggi), sample 2 agregat halus (pasir) Kali Putih menghasilkan rata –rata uji kuat tekan beton sebesar 3,208 Mpa (terendah), dan sample 3 agregat halus (pasir) sungaiBrantas menghasilkan rata – rata uji kuat tekan beton sebesar 3,272 Mpa


2020 ◽  
Vol 11 (2) ◽  
pp. 61-71
Author(s):  
Yulizar Yusuf ◽  
Vivin Firman Savitri ◽  
Hermansyah Aziz

The aim of this study is to utilize fly ash from various sources on chemical and physical properties of cement type I (OPC). Utilization of fly ash can improve the strengthness of the cement. It can reduce the waste of fly ash by utilization into cement process. The procedure has been carried out on cement type I (OPC) with the addition of fly ash additives from various sources with concentration variations such as 10% and 20%. Utilization of fly ash as additives substance in cement works to improve the quality of cement. The main parameter in determining the quality of cement is determined by the compressive strength. The results of the compressive strength test showed that the addition of fly ash with a concentration of 10% had a higher effect on the compressive strength than the addition of a concentration of 20%. 5 types fly ash from various sources, fly ash from PT Sinar Mas gives greater compressive strength at 28 days. the addition of fly ash additives to OPC cement mixture has chemical and physical properties which are not much different from properties of PCC cement.


Sign in / Sign up

Export Citation Format

Share Document