scholarly journals Cashew Apple Utilization-Generating Wealth from Waste

2019 ◽  
Vol 4 (4) ◽  

Cashew (Anacardium occidentale), belonging to the family Anacardiaceae, is a major commercial horticultural crop of India. It is primarily cultivated for its nut, and widely grown in tropical areas. However, may be due to the high value of the nut, another important produce from cashew i.e. cashew apple, has been neglected all along without any utilization. Cashew apple is very tasty and is highly nutritious. It is comparable with many other tropical fruits in its nutritive value and contains more vitamin C and riboflavin. It is not commercially used in India, except in Goa where it is profitably used for the production of feni. The cashew apple, weighing about 8-10 times that of the nut, is an equally valuable produce from the crop, if it is economically exploited. Cashew apple is a pseudo fruit formed by the swollen receptacle and is highly nutritious and is a valuable source of sugar, minerals and vitamins. Ripe apple is very juicy and spongy having a unique flavour and smell. The astringent and acid principles in cashew apple produce a rough unpleasant and biting sensation on the tongue and throat, major drawback of the fruit which prevents the consumption of fresh fruits and the tannin content varies from 0.06 to 0.76g per 100 g. This in fact limits the utilization of cashew apple as fresh fruit as well as raw material in the fruit processing industry [1,2]. Hence the removal of astringency is the primary step in cashew apple processing. Large number of technologies has been developed by various research stations in India, more specifically Cashew Research Station, Madakkathara, Kerala Agricultural University, Vellanikkara, Thrissur, Keralka India, for the economic utilization of cashew apple by processing it into various value added products.

Author(s):  
Ali Raza Ishaq ◽  
Faiza Jabeen ◽  
Maleeha Manzoor ◽  
Tahira Younis ◽  
Ayesha Noor ◽  
...  

Modern day civilization is dependent on energy generation by fossil fuels. But the major drawback of using fossil fuels is environmental pollution. Microalgae are potential candidate for production of various products of interest, such as proteins, mini food, pigments and triglycerides that can be converted into biofuels. Lignocellulosic feedstocks are the most abundantly available raw material of plants that can serve as a promising feedstock for cultivating bacteria, fungi, yeasts and microalgae to produce biofuels and other value-added products. Owing to the abundant availability of these low/no cost substrates, can be utilized as feedstocks for cultivating microalgae to generate biogas/biodiesel. Likewise, there is much room to exploit defatted algal biomass to be used as animal/fish feed and oil producing/accumulating genes knowledge in future to produce high and good quality biodiesel and biogas.


2020 ◽  
Vol 9 (1) ◽  
pp. 55
Author(s):  
María Florencia Eberhardt ◽  
José Matías Irazoqui ◽  
Ariel Fernando Amadio

Stabilization ponds are a common treatment technology for wastewater generated by dairy industries. Large proportions of cheese whey are thrown into these ponds, creating an environmental problem because of the large volume produced and the high biological and chemical oxygen demands. Due to its composition, mainly lactose and proteins, it can be considered as a raw material for value-added products, through physicochemical or enzymatic treatments. β-Galactosidases (EC 3.2.1.23) are lactose modifying enzymes that can transform lactose in free monomers, glucose and galactose, or galactooligosacharides. Here, the identification of novel genes encoding β-galactosidases, identified via whole-genome shotgun sequencing of the metagenome of dairy industries stabilization ponds is reported. The genes were selected based on the conservation of catalytic domains, comparing against the CAZy database, and focusing on families with β-galactosidases activity (GH1, GH2 and GH42). A total of 394 candidate genes were found, all belonging to bacterial species. From these candidates, 12 were selected to be cloned and expressed. A total of six enzymes were expressed, and five cleaved efficiently ortho-nitrophenyl-β-galactoside and lactose. The activity levels of one of these novel β-galactosidase was higher than other enzymes reported from functional metagenomics screening and higher than the only enzyme reported from sequence-based metagenomics. A group of novel mesophilic β-galactosidases from diary stabilization ponds’ metagenomes was successfully identified, cloned and expressed. These novel enzymes provide alternatives for the production of value-added products from dairy industries’ by-products.


PeerJ ◽  
2019 ◽  
Vol 6 ◽  
pp. e6186 ◽  
Author(s):  
Ting-Ting Jiang ◽  
Yan Liang ◽  
Xiang Zhou ◽  
Zi-Wei Shi ◽  
Zhi-Jun Xin

Background Sweet sorghum bagasse (SSB), comprising both a dermal layer and pith, is a solid waste generated by agricultural activities. Open burning was previously used to treat agricultural solid waste but is harmful to the environment and human health. Recent reports showed that certain techniques can convert this agricultural waste into valuable products. While SSB has been considered an attractive raw material for sugar extraction and the production of value-added products, the pith root in the SSB can be difficult to process. Therefore, it is necessary to pretreat bagasse before conventional hydrolysis. Methods A thorough analysis and comparison of various pretreatment methods were conducted based on physicochemical and microscopic approaches. The responses of agricultural SSB stem pith with different particle sizes to pretreatment temperature, acid and alkali concentration and enzyme dosage were investigated to determine the optimal pretreatment. The integrated methods are beneficial to the utilization of carbohydrate-based and unknown compounds in agricultural solid waste. Results Acid (1.5−4.5%, v/v) and alkali (5−8%, w/v) reagents were used to collect cellulose from different meshes of pith at 25–100 °C. The results showed that the use of 100 mesh pith soaked in 8% (w/v) NaOH solution at 100 °C resulted in 32.47% ± 0.01% solid recovery. Follow-up fermentation with 3% (v/v) acid and 6.5% (w/v) alkali at 50 °C for enzymolysis was performed with the optimal enzyme ratio. An analysis of the surface topography and porosity before and after pretreatment showed that both the pore size of the pith and the amount of exposed cellulose increased as the mesh size increased. Interestingly, various compounds, including 42 compounds previously known to be present and 13 compounds not previously known to be present, were detected in the pretreatment liquid, while 10 types of monosaccharides, including D-glucose, D-xylose and D-arabinose, were found in the enzymatic solution. The total monosaccharide content of the pith was 149.48 ± 0.3 mg/g dry matter. Discussion An integrated technique for obtaining value-added products from sweet sorghum pith is presented in this work. Based on this technique, lignin and hemicellulose were effectively broken down, amorphous cellulose was obtained and all sugars in the sweet sorghum pith were hydrolysed into monosaccharides. A total of 42 compounds previously found in these materials, including alcohol, ester, acid, alkene, aldehyde ketone, alkene, phenolic and benzene ring compounds, were detected in the pretreatment pith. In addition, several compounds that had not been previously observed in these materials were found in the pretreatment solution. These findings will improve the transformation of lignocellulosic biomass into sugar to create a high-value-added coproduct during the integrated process and to maximize the potential utilization of agricultural waste in current biorefinery processing.


2021 ◽  
Vol 59 (2) ◽  
Author(s):  
Elizabeta Zandona ◽  
Marijana Blažić ◽  
Anet Režek Jambrak

The dairy industry produces large amounts of whey as a by- product or co-product, which has led to considerable environmental problems due to its high organic matter content. Over the past decades, possibilities of more environmentally and economically efficient whey utilisation have been studied, primarily to convert unwanted end products into a valuable raw material. Sustainable whey management is mostly oriented to biotechnological and food applications for the development of value-added products such as whey powders, whey proteins, functional food and beverages, edible films and coatings, lactic acid and other biochemicals, bioplastic, biofuels and similar valuable bioproducts. This paper provides an overview of the sustainable utilization of whey and its constituents, considering new refining approaches and integrated processes to covert whey, or lactose and whey proteins to high value-added whey-based products.


Author(s):  
Mridul Umesh ◽  
Thazeem Basheer

Biosynthetic capabilities of microbes have solved several hurdles in the human welfare. Microbes have served and continue to serve as imperial candidates in both production and management strategies. Microbe mediated techniques has emerged as ecofriendly and sustainable alternative to their synthetic counterparts. Fruit based industries produces large volumes of solid and liquid wastes contributing to increase in pollution load. Disposal of these waste not only represent loss of valuable biomass but also leads to substantial increase in Biological Oxygen Demand (BOD) and Chemical Oxygen Demand (COD). However, in spite of their pollution and hazard aspects, in many cases, fruit processing wastes have a promising potential for being chief raw materials for secondary industries. This chapter summarizes microbe mediated fermentative utilization of fruit waste, for the production of value added products like organic acid, single cell protein, bioplastics, enzymes and biogas.


2019 ◽  
Vol 18 (1) ◽  
Author(s):  
Manuel Nieto-Domínguez ◽  
José Alberto Martínez-Fernández ◽  
Beatriz Fernández de Toro ◽  
Juan A. Méndez-Líter ◽  
Francisco Javier Cañada ◽  
...  

Abstract Background Currently, industrial societies are seeking for green alternatives to conventional chemical synthesis. This demand has merged with the efforts to convert lignocellulosic biomass into value-added products. In this context, xylan, as one of main components of lignocellulose, has emerged as a raw material with high potential for advancing towards a sustainable economy. Results In this study, the recombinant endoxylanase rXynM from the ascomycete Talaromyces amestolkiae has been heterologously expressed in Pichia pastoris and used as one of the catalysts of an enzyme cascade developed to synthesize the antiproliferative 2-(6-hydroxynaphthyl) β-d-xylopyranoside, by transglycosylation of 2,6-dihydroxynaphthalene. The approach combines the use of two fungal xylanolytic enzymes, rXynM and the β-xylosidase rBxTW1 from the same fungus, with the cost-effective substrate xylan. The reaction conditions for the cascade were optimized by a Central Composite Design. Maximal productions of 0.59 and 0.38 g/L were reached using beechwood xylan and birchwood xylan, respectively. For comparison, xylans from other sources were tested in the same reaction, suggesting that a specific optimization is required for each xylan variety. The results obtained using this enzyme cascade and xylan were similar or better to those previously reported for a single catalyst and xylobiose, an expensive sugar donor. Conclusions Beechwood and birchwood xylan, two polysaccharides easily available from biomass, were used in a novel enzyme cascade to synthetize an antiproliferative agent. The approach represents a green alternative to the conventional chemical synthesis of 2-(6-hydroxynaphthyl) β-d-xylopyranoside using a cost-effective substrate. The work highlights the role of xylan as a raw material for producing value-added products and the potential of fungal xylanolytic enzymes in the biomass conversion.


2018 ◽  
Vol 5 (4) ◽  
pp. 93 ◽  
Author(s):  
Rajeev Ravindran ◽  
Shady Hassan ◽  
Gwilym Williams ◽  
Amit Jaiswal

Agro-industrial waste is highly nutritious in nature and facilitates microbial growth. Most agricultural wastes are lignocellulosic in nature; a large fraction of it is composed of carbohydrates. Agricultural residues can thus be used for the production of various value-added products, such as industrially important enzymes. Agro-industrial wastes, such as sugar cane bagasse, corn cob and rice bran, have been widely investigated via different fermentation strategies for the production of enzymes. Solid-state fermentation holds much potential compared with submerged fermentation methods for the utilization of agro-based wastes for enzyme production. This is because the physical–chemical nature of many lignocellulosic substrates naturally lends itself to solid phase culture, and thereby represents a means to reap the acknowledged potential of this fermentation method. Recent studies have shown that pretreatment technologies can greatly enhance enzyme yields by several fold. This article gives an overview of how agricultural waste can be productively harnessed as a raw material for fermentation. Furthermore, a detailed analysis of studies conducted in the production of different commercially important enzymes using lignocellulosic food waste has been provided.


Author(s):  
Anisha Verma ◽  
Neeru Bala ◽  
Nikeshwori Khangembam

The present study is focused to analyze the nutrients and anti-nutrient content of fresh Loni, to analyze the effect of cooking methods on the anti-nutritional factors of Loni, to prepare the value added products using fresh Loni and evaluate their sensory acceptability, to determine the nutritive value of the prepared products. Nutrient composition and anti-nutritional factors of fresh and cooked loni were determined. Two food products were made by incorporation of fresh loni at 40 percent, 60 per cent and 80 per cent in ‘Crispy leafy vegetable cutlets’ and 15 per cent, 30 per cent and 45 per cent in ‘Paratha’ refers as T1, T2, T3 respectively and the control T0 was made without incorporation of loni. The products were organoleptically evaluated for sensory acceptability using nine point hedonic scale. The nutrient content of fresh Loni were moisture 90.68 %, ash 4.4 g, protein 1.4 g, fat 0.4 g, crude fiber 1.6 g, carbohydrate 2.25 g, energy 24 kcal, calcium 273 mg, iron 14.34 mg, total carotene 3124 µg per 100 g. The anti-nutritional content of loni were significantly decreased after shallow and deep frying. Organoleptically it was found that 60 per cent incorporation of fresh loni in ‘Crispy leafy vegetable cutlets’ and 30 per cent incorporation of fresh loni in Paratha was found most acceptable. As well as the incorporation level increased the amount of fibre, calcium, iron and total carotene in the prepared products. On the basis of finding it is concluded that the fresh Loni can be used in the preparation of various products to increase the level of micro-nutrients.


2015 ◽  
Vol 18 (3) ◽  
pp. 192-198 ◽  
Author(s):  
Liliana SERNA-COCK ◽  
Diana Patricia VARGAS-MUÑOZ ◽  
Carlos Andrés RENGIFO-GUERRERO

Summary The chemical characterization of the pulp, peel and seeds of cocona (Solanum sessiliflorum Dunal) was determined. In artisanal fruit processing, 26.3% of peel and 9.7% of seeds were obtained. The seeds showed a high potential for the development of value-added products because of their dry matter contents (23.46%) as follows: carbohydrate (69.37% dry basis (d.b.)), nitrogen (3.18 g/100 g of seed d.b.), K (0.023 g/100 g of seed d.b.), Fe (0.0185 g/100 g of seed d.b.) and dietary fiber (21.27 g/100 g of seed d.b.). The carbohydrate, dietary fibre and mineral contents of the pulp, peel and seeds also highlighted the agroindustrial potential of the fruit in that these constituents could be used to develop functional foods, food additives, preparations for functional diets and dietary supplements.


Sign in / Sign up

Export Citation Format

Share Document