scholarly journals Sifat Fisikokimia Zat Pewarna dari Bunga Eceng Gondok (Eichhornia crassipes) yang Diekstrak dengan Metode Microwave Asissted Extraction (MAE)

2019 ◽  
Vol 8 (1) ◽  
pp. 94-106
Author(s):  
Merynda Indriyani Syafutri ◽  
Filli Pratama ◽  
Gading Putra Yanda

Syafutri et al, 2019. Physicochemical Properties of Colorant from Water Hyacinth Flower (Eichhornia crassipes) Extracted by Microwave Assisted Extraction (MAE) Method. JLSO 8(1):94-106.The objective of this research was to determine the effect of oven microwave power and extraction time on color intensity, anthocyanin stability, and antioxidant activity of colorant from water hyacinth flower (Eichhornia crassipes) extracted by microwave assisted extraction (MAE) method. The research was conducted at Agricultural Product Chemical Laboratory, Agricultural Technology Department, Faculty of Agriculture, Sriwijaya University. The experiment used a Factorial Completely Randomized Design with two factors and each treatment was repeated three times.  The first factor was oven microwave power (100 watts and 300 watts) and the second factor was extraction time in oven microwave (1 minute, 2 minutes, and 3 minutes). The parameters were color intensity, anthocyanin stability, and antioxidant activity. The results showed that the oven microwave power and extraction time had significant effects on color intensity and antioxidant activity. The increasing of oven microwave power and extraction time increased a* value and antioxidant activity, and decreased b* value, significantly. The result also showed that the anthocyanin compounds was not stable with heating up to 105°C.

2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Alexander Weremfo ◽  
Felix Adulley ◽  
Martin Adarkwah-Yiadom

This study was designed to optimize three microwave-assisted extraction (MAE) parameters (ethanol concentration, microwave power, and extraction time) of total phenolics, total flavonoids, and antioxidant activity of avocado seeds using response surface methodology (RSM). The predicted quadratic models were highly significant (p<0.001) for the responses studied. The extraction of total phenolic content (TPC), total flavonoid content (TFC), and antioxidant activity was significantly (p<0.05) influenced by both microwave power and extraction time. The optimal conditions for simultaneous extraction of phenolic compounds and antioxidant activity were ethanol concentration of 58.3% (v/v), microwave power of 400 W, and extraction time of 4.8 min. Under these conditions, the experimental results agreed with the predicted values. MAE revealed clear advantages over the conventional solvent extraction (CSE) in terms of high extraction efficiency and antioxidant activity within the shortest extraction time. Furthermore, high-performance liquid chromatography (HPLC) analysis of optimized extract revealed the presence of 10 phenolic compounds, with rutin, catechin, and syringic acid being the dominant compounds. Consequently, this optimized MAE method has demonstrated a potential application for efficient extraction of polyphenolic antioxidants from avocado seeds in the nutraceutical industries.


Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 682
Author(s):  
Noor Wahida Ismail-Suhaimy ◽  
Siti Salwa Abd Gani ◽  
Uswatun Hasanah Zaidan ◽  
Mohd Izuan Effendi Halmi ◽  
Paiman Bawon

Barleria lupulina Lindl. (Acanthaceae) as an ornamental plant has been widely used in folklore medicine due to its abundancy in polyphenolic compounds. The present study examined conditions for optimal extraction of antioxidants from B. lupulina leaf extracts by using the microwave-assisted extraction (MAE) method. The effects of ethanol concentrations, microwave power, and extraction time on total phenolic content (TPC), total flavonoid content (TFC), 1-diphenyl-2-picrylhydrazyl (DPPH), and 2,20-azino-bis (3-ethylbenzothizoline-6-sulfonic acid) (ABTS) were investigated by single-factor experiments. Response surface methodology (RSM) was applied to observe interactions of three independent variables (ethanol concentrations, microwave power, and extraction time) on the dependent variables (TPC, TFC, DPPH, and ABTS) to establish optimal extraction conditions. Quadratic polynomial equations in all experimental models yielded favorably with fitted models with R2 and R2adj of more than 0.90 and a non-significant lack of fit at p > 0.05. The optimal conditions for the extraction of antioxidant activity were established at 80% (v/v) ethanol, 400 W, and 30 s with TPC (238.71 mg gallic acid equivalent (GAE)/g sample), TFC (58.09 mg QE/g sample), DPPH (87.95%), and ABTS (89.56%). Analysis by ultra-high-performance liquid chromatography–quadrupole time-of-flight mass spectrometry (UHPLC-QTOF/MS) successfully identified four new phenylethanoid glycoside compounds in the species.


2018 ◽  
Vol 69 (3) ◽  
pp. 260 ◽  
Author(s):  
H. N. Özbek ◽  
D. Koçak Yanık ◽  
S. Fadıloğlu ◽  
H. Keskin Çavdar ◽  
F. Göğüş

Soxhlet and microwave assisted extraction (MAE) methods were used to obtain non-polar compounds from pistachio hull. MAE parameters (liquid to solid ratio, microwave power, and extraction time) were studied to obtain maximum extraction yield. The optimal conditions were found to be liquid to solid ratio of 15:1 (v/w), microwave power of 250 W and extraction time of 12.5 min. The extraction yields were 9.81 and 9.50% for MAE and Soxhlet methods, respectively. The total phenolic content, antioxidant activity and tocopherol content of the extract obtained by MAE was found to be significantly higher than those of the Soxhlet extract (p < 0.05). The results showed that the extract contained α-tocopherols (567.65 mg/kg) and oleic acid (48.46%) as the major tocopherols and fatty acids. These findings propose that hull extracts can be considered as a good source of natural bioactive compounds and MAE can be a good alternative to the traditional Soxhlet method.


Antioxidants ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 678
Author(s):  
Ao Shang ◽  
Min Luo ◽  
Ren-You Gan ◽  
Xiao-Yu Xu ◽  
Yu Xia ◽  
...  

In this study, the effects of microwave-assisted extraction conditions on antioxidant capacity of sweet tea (Lithocarpus polystachyus Rehd.) were studied and the antioxidants in the extract were identified. The influences of ethanol concentration, solvent-to-sample ratio, microwave power, extraction temperature and extraction time on Trolox equivalent antioxidant capacity (TEAC) value, ferric reducing antioxidant power (FRAP) value and total phenolic content (TPC) were investigated by single-factor experiments. The response surface methodology (RSM) was used to study the interaction of three parameters which had significant influences on antioxidant capacity including ethanol concentration, solvent-to-sample ratio and extraction time. The optimal conditions for the extraction of antioxidants from sweet tea were found as follows—ethanol concentration of 58.43% (v/v), solvent-to-sample ratio of 35.39:1 mL/g, extraction time of 25.26 min, extraction temperature of 50 ℃ and microwave power of 600 W. The FRAP, TEAC and TPC values of the extract under the optimal conditions were 381.29 ± 4.42 μM Fe(II)/g dry weight (DW), 613.11 ± 9.32 μM Trolox/g DW and 135.94 ± 0.52 mg gallic acid equivalent (GAE)/g DW, respectively. In addition, the major antioxidant components in the extract were detected by high-performance liquid chromatography with diode array detection (HPLC-DAD), including phlorizin, phloretin and trilobatin. The crude extract could be used as food additives or developed into functional food for the prevention and management of oxidative stress-related diseases.


Antioxidants ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 129 ◽  
Author(s):  
Bao Le ◽  
Kirill S. Golokhvast ◽  
Seung Hwan Yang ◽  
Sangmi Sun

The use of green marine seaweed Ulva spp. as foods, feed supplements, and functional ingredients has gained increasing interest. Microwave-assisted extraction technology was employed to improve the extraction yield and composition of Ulva pertusa polysaccharides. The antioxidant activity of ulvan was also evaluated. The impacts of four independent variables, i.e., extraction time (X1, 30 to 60 min), power (X2, 500 to 700 W), water-to-raw-material ratio (X3, 40 to 70), and pH (X4, 5 to 7) were evaluated. The chemical structure of different polysaccharides fractions was investigated via FT-IR and the determination of their antioxidant activities. A response surface methodology based on a Box–Behnken design (BBD) was used to optimize the extraction conditions as follows: extraction time of 43.63 min, power level of 600 W, water-to-raw-material ratio of 55.45, pH of 6.57, and maximum yield of 41.91%, with a desired value of 0.381. Ulvan exerted a strong antioxidant effect against 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) and showed reducing power in vitro. Ulvan protected RAW 264.7 cells against H2O2-induced oxidative stress by upregulating the expression and enhancing the activity of oxidative enzymes such as superoxide dismutase (SOD) and superoxide dismutase (CAT). The results suggest that the polysaccharides from U. pertusa might be promising bioactive compounds for commercial use.


2017 ◽  
Vol 6 (3) ◽  
pp. 52-57
Author(s):  
Iriany ◽  
Florentina Pandiangan ◽  
Christina Eka P

Tannin is one of complex polyphenol compound which soluble in polar solvent. Tannin could be extracted from acacia bark. This study aims to examine microwave-assisted extraction of tannins under influence of microwave power, extraction time, and solvent and its application to adsorb Cd and Cu. Tannin was extracted from acacia bark with feed-to-solvent ratio (1:20 g/ml). Power of microwave was adjusted 100 W, 180 W, 300 W, 450 W, and 600 W for 1 minute, 3 minutes and 5 minutes respectively using aquadest and ethanol as the solvent. The extracts were analyzed using UV-Vis spectrophotometer. Furthermore, the extract with the highest yield of tannins are used as the adsorbent. The concentration of Cd and cu were analyzed using Atomic Absorption Spectrophotometer. The result showed the highest yield of tannin 26.606 mg/g at 100 W and 3 minutes extraction time using ethanol as the solvent. The result showed that the adsorption capacity of adsorbent from tannin was 3.81 mg/g and 2.26 mg/g for Cd and Cu respectively.


2011 ◽  
Vol 79 ◽  
pp. 204-209 ◽  
Author(s):  
Bin Wang ◽  
Guo Zhong Tong ◽  
You Le Qu ◽  
Li Li

An efficient microwave-assisted extraction (MAE) technique was developed to extract polysaccharides from Enteromorpha prolifera (PEP). The operating parameters, such as microwave power, liquid/material ratio, temperature and extraction time, were optimized using orthogonal array design coupled with single factor method. PEP yield was determined by the phenol-sulfuric acid method. The optimum extraction conditions were determined as follows: microwave power, 700 W; liquid/material ratio, 40:1 (mL/g); temperature, 70 °C; and extraction time, 25 min. Under such conditions, PEP yield reached to 10.79 %. In comparison with conventional hot water extraction and ultrasonic-assisted extraction, MAE showed obvious advantages in terms of high extraction efficiency, saving energy, rapidity, solvent consumption, and so on. The data demonstrated that MAE could be a fast and reliable method for quantitative analysis of PEP. The scavenging capability of PEP to DPPH/hydroxyl radical reached to 65.2 % and 41.2 % at the concentration of 0.5 mg/mL. The reducing power of PEP was 0.354. Compared with butylated hydroxytoluene (BHT) and gallic acid (GA), the experimental results showed that DPPH radical scavenging activity of PEP was higher than that of BHT. Thus, PEP had good potential as a natural antioxidant used in functional food or medicine industries.


Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1432
Author(s):  
Min Luo ◽  
Dan-Dan Zhou ◽  
Ao Shang ◽  
Ren-You Gan ◽  
Hua-Bin Li

Akebia trifoliata is a fruit with rich nutritional properties, and its peel is produced as a by-product. In this research, we investigated the influences of microwave-assisted extraction parameters on antioxidant activity of the extract from Akebia trifoliata peels, and the ferric-reducing antioxidant power (FRAP) and Trolox equivalent antioxidant capacity (TEAC) as well as total phenolic contents (TPC) were used to optimize extraction parameters. The influences of ethanol concentration, microwave power and solvent-to-material ratio, as well as extraction temperature and time on TPC, FRAP and TEAC values, were assessed using single-factor tests. Three parameters with obvious effects on antioxidant capacity were selected to further investigate their interactions by response surface methodology. The optimal extraction parameters of natural antioxidants from Akebia trifoliata peels were ethanol concentration, 49.61% (v/v); solvent-to-material ratio, 32.59:1 mL/g; extraction time, 39.31 min; microwave power, 500 W; and extraction temperature, 50 °C. Under optimal conditions, the FRAP, TEAC and TPC values of Akebia trifoliata peel extracts were 351.86 ± 9.47 µM Fe(II)/g dry weight (DW), 191.12 ± 3.53 µM Trolox/g DW and 32.67 ± 0.90 mg gallic acid equivalent (GAE)/g DW, respectively. Furthermore, the main bioactive compounds (chlorogenic acid, rutin and ellagic acid) in the extract were determined by high-performance liquid chromatography. The results are useful for the full utilization of the by-product from Akebia trifoliate fruit.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3761
Author(s):  
Thi-Thuy-Dung Nguyen ◽  
Quoc-Duy Nguyen ◽  
Thi-Van-Linh Nguyen

Polyscias fruticosa (L.) leaves contain significant bioactive compounds with high antioxidant activity such as chlorophylls, total polyphenols, etc. but these have still been underutilized. In this study, the kinetics of chlorophyll and antioxidant activity extraction from P. fruticosa leaves by microwave-assisted extraction (MAE) were investigated. Microwave power was 300, 450, or 600 (W); the ratio of material/solvent varied from 1:40 to 1:80 (g/mL). In this study, the second-order kinetic model successfully predicted the change of chlorophyll and antioxidant activity during MAE. The increase of microwave power or/and the solvent amount increased saturated extraction efficiency and the extraction rate constant. However, the saturated concentration of chlorophyll and antioxidant activity increased with the increment of microwave power and the decrease in solvent amount.


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 1033
Author(s):  
Konstantinos Petrotos ◽  
Ioannis Giavasis ◽  
Konstantinos Gerasopoulos ◽  
Chrysanthi Mitsagga ◽  
Chryssoula Papaioannou ◽  
...  

Pomegranate pomace (PP) is the solid waste produced in bulk by the pomegranate juice industry which is rich in polyphenols and flavonoids that can replace the hazardous chemical antioxidants/antimicrobials currently used in the agro-food and cosmetics sectors. In the present work, the vacuum microwave assisted extraction (VMAE) of natural antioxidants from raw pomegranate pomace was investigated and successfully optimized at an industrial scale. For the optimization of PP VMAE a novel, highly accurate response surface methodology (RSM) based on a comprehensive multi-point historical design was employed. The optimization showed that the maximum recovery of PP total polyphenols as well as total PP flavonoids were obtained at microwave power = 4961.07 W, water to pomace ratio = 29.9, extraction time = 119.53 min and microwave power = 4147.76 W, water to pomace ratio = 19.32, extraction time = 63.32 min respectively. Moreover, the optimal VMAE conditions on economic grounds were determined to be: microwave power = 2048.62 W, water to pomace ratio = 23.11, extraction time = 15.04 min and microwave power = 4008.62 W, water to pomace ratio = 18.08, extraction time = 15.29 min for PP total polyphenols and PP total flavonoids respectively. The main conclusion of this study is that the VMAE extraction can be successfully used at industrial scale to produce, in economic manner, high added value natural extracts from PP pomace.


Sign in / Sign up

Export Citation Format

Share Document