scholarly journals The Effect of the Mixture of Plastic Waste as a Lightweight Concrete Material

Author(s):  
Nurmaidah Nurmaidah ◽  
Yudhis Tira Pradana

Concrete has many functions, and is also an important role in maintaining building stability and strength. By using plastic fiber as a lightweight concrete mixture material, it is expected to increase the compressive strength of the lightweight concrete, and also to reduce the negative impact of waste plastic bottles. In this study also added differences in FAS for each specimen 0.5 and 0.6. With the difference in variation in each lightweight concrete specimen, it is expected to be able to know the performance of concrete from the different variations of PET and FAS. The use of PET and FAS mixtures in lightweight concrete produces the lightest Concrete at 9% PET mixture of fine aggregate weight. In full there are two results, FAS 0.5 = 11045 gr, and FAS 0.6 = 10981  gr. But for the maximum weight of test specimens it cannot be said to be structural lightweight concrete because it does not meet the minimum weight requirement of 1850 Kg / m3. The Slump test on the specimen shows that the highest Slump test is in FAS 0.6 with 9% PET mixture, with slump height reaching 135 mm or 13 cm, and 125 mm or 12.5 cm in FAS 0.5 9% PET mixture. Cylinder absorbance showed that the average maximum absorption of FAS specimens was 0.5 = 1,268% and FAS 0.6 = 1,212%. The value of the lightest concrete compressive strength is the most optimum in the variation of 3% PET specimens in FAS 0.5 and variation of 6% PET specimens in FAS 0.6. that is 25 Mpa and 19 Mpa. And for the SPSS test states that there is a significant difference in the differences in the variation of PET and FAS test objects.

Cerâmica ◽  
2017 ◽  
Vol 63 (368) ◽  
pp. 530-535
Author(s):  
Z. L. M. Sampaio ◽  
A. E. Martinelli ◽  
T. S. Gomes

Abstract The recent increase in the construction industry has transformed concrete into an ideal choice to recycle a number of residues formerly discarded into the environment. Among various products, porcelain tile polishing, limestone and tire rubber residues are potential candidates to replace the fine aggregate of conventional mixtures. The aim of this study was to investigate the effect of the addition of varying contents of these residues in lightweight concrete where expanded clay replaced gravel. To that end, slump, compressive strength, density, void ratio, porosity and absorption tests were carried out. The densities of all concrete formulations studied were 10% lower to that of lightweight concrete (<1.850 kg/m³). Nevertheless, mixes containing 10 to 15% of combined residues reduced absorption, void ratio and porosity, at least 17% lower compared to conventional concrete. The strength of such formulations reached 27 MPa at 28 days with consistency of 9 to 12 cm, indicating adequate consistency and increased strength. In addition, the combination of low porosity, absorption and voids suggested improved durability.


Abstract In this study, vermicompost is replaced for fine aggregate in geopolymer concrete (GPC). Initially mix design is made for GPC and mix proportion is proposed. The vermicompost is replaced at 5%, 10%, 15% and 20% with M sand in GPC. Result indicates the 5% replacement with vermicompost based geopolymer concrete (GPVC) has the compressive strength of 32 N mm−2 (M30 grade) whereas the compressive strength of control specimen made with GPC is 37 N mm−2. Other replacement shows 21 N mm−2, 14 N mm−2 and 11 N mm−2 respectively. The 5% replaced concrete cubes and control specimen are tested at an elevated temperature of 200°C, 400°C, 600°C and 800°C and compared with the control specimen. There is no significant difference observed in weight lost at control (GPC) and GPVC specimen. An elevated temperature, the weight loss is almost 4% at 200°C because of expulsion of water from the concrete. Afterwards only 2% weight loss is observed in remaining elevated temperature. The compressive strength loss is observed at an elevated temperature in GPC and GPVC specimen because of thermal incompatibility between aggregate and the binder. EDX results show M sand and compost contains Si, Al, C, Fe, Ca, Mg, Na and K and it is similar in the elemental composition and SEM image confirms vermicompost contains fine particles.


Author(s):  
Suwendy Arifin Et.al

Pervious concrete or non-fine concrete is a simple form of lightweight concrete made by eliminating the use of fine aggregates. As a result of not using fine aggregate in pervious concrete, then created a cavity filled with air and water can be passed. This cavity resulted in reduced density of the concrete as well as the reduced amount of area that needs to be covered by cement paste, thereby reducing the compressive strength. To increase the compressive strength of pervious concrete, in this study will utilize waste material. The waste material is the cocnut shell ash and coconut shell to strengthen the coarse aggregate bonds, so it is expected to increase the compressive strength along with the increase in permeability. Thus, in this study will replace part of the coarse aggregate with coconut shell with percentage 0%, 2,5%, 5%, 7,5%, 10% and partially replace cement with coconut shell ash with percentage 0%, 2,5%, 5%, 7,5%


Author(s):  
Barkha Verma

Abstract: Aggregates provide volume at low cost, comprising 66% to 78% of the concrete. With increasing concern over the excessive exploitation of natural and quality aggregates, the aggregate produced from industrial wastes and agricultural wastes is the viable new source for building material. This study was carried out to determine the possibilities of using coconut shells as aggregate in concrete. Utilizing coconut shells as aggregate in concrete production not only solves the problem of disposing of this solid waste but also helps conserve natural resources. In this paper, the physical properties of crushed coconut shell aggregate were presented. The fresh concrete properties such as the density and slump and 28 days compressive strength of lightweight concrete made with coconut shell as coarse aggregate were also presented. The findings indicate that water absorption of the coconut shell aggregate was high about 24% but crushing value and impact value were comparable to that of other lightweight aggregates. The average fresh concrete density and 28days cube compressive strength of the concrete using coconut shell aggregate 1975kg/m3 and 19.1 N/mm2 respectively. It is concluded that crushed coconut shell is suitable when it is used as a substitute for conventional aggregates in lightweight concrete production. Keywords: Coarse Aggregate, Cement, Concrete, Fly Ash, Coconut shell Aggregate, Water, Compressive Strength, Workability, Fine Aggregate.


2017 ◽  
Vol 3 (8) ◽  
pp. 594-609 ◽  
Author(s):  
Bengin Herki

The environmental impacts of the construction industry can be minimised through using waste and recycled materials to replace natural resources. Results are presented of an experimental study concerning capillary transport of water in concrete incorporating densified expanded polystyrene (EPS) as a novel aggregate. A new environmentally friendly technique of densifying was used to improve the resistance to segregation of EPS beads in concrete. Twelve concrete mixes with three different water/cement ratios of 0.6, 0.8 and 1.0 with varying novel aggregate content ratios of 0, 30, 60 and 100% as partial replacement for natural aggregate by equivalent volume were prepared and tested. Total absorption, absorption by capillary action, and compressive strength was determined for the various concrete mixes at different curing times. The results indicated that there is an increase in total water absorption (WA) and capillary water absorption (CWA) and a decrease in compressive strength with increasing amounts of the novel aggregate in concrete. However, there is no significant difference between the CWA of control and concretes containing lower replacement level.


2016 ◽  
Vol 19 (2) ◽  
pp. 121-127
Author(s):  
Siti Wahyuni ◽  
Haslinda Z Tamin ◽  
Harry Agusnar

Gypsum is derived from pure calcium sulfate dehydrate which is a common material that is commonly used in denture manufacturing process. This study aimed to know the difference on compressive strength and dimensional change of commercially type III gypsum compared to recycle type III gypsum to produce working cast. The type of research is laboratory experiment. A total of 40 samples for each test is divided into five groups which consists of commercial type III gypsum,  pure recycled type III gypsum, pure recycled type III gypsum with 10%, 20%, 30% type III commercial gypsum. The difference on compressive strength and dimensional change between the groups was analyzed using one way ANOVA and is them tested with LSD test. The result showed that there was a significant difference (p<0,05) between compressive strength and dimensional change of commercial type III gypsum compared to pure recycled type III gypsum and pure recycled type III gypsum with 10%, 20% and 30% type III commercial gypsum. In conclusion, addition of 30% commercial gypsum in recycled gypsum the compressive strength was higher than other recycled gypsum types.  


2018 ◽  
Vol 8 (1) ◽  
pp. 42-53
Author(s):  
Achendri M. Kurniawan

 Blitar city experienced a fairly rapid development in the field of trade. One of them is handicraft industry from wood, especially kendang jimbe. The area that is quite famous as a producer of jimbe kendang is Tanggung Village, Kepanjenkidul Subdistrict, Blitar City. In this area most of the people work as kendang craftsmen, is also a center of handicraft lathe in Blitar City. Basically, Blitar people earn from this activity, in this case people can not make good use of the rest of the activity, especially the utilization of ash of burning of mahogany powder. Of the abundant ash of the combustion of mahogany wood is expected to be used as an additional mixture of lightweight concrete. The method used in this study using laboratory experiments and guided on SNI 03-0691-2000. Mixture of mahogany ash dust, and know the compressive strength of lightweight brick with dust ash material as added sand material 0%, 25%, 50%. From this comparison can be generated as follows: The use of ash of dried mahogany ash adds fine aggregate material (sand) in concrete brick mixture at 7 days old for 0% mixture is 3.28 MPa. Strong press for substitution 25% wood ash larger 26,37% that is 4,14 MPa and object of test with substitution 50% decrease 12,46% that is 2,87 MPa. Kota Blitar mengalami perkembangan yang cukup pesat di bidang perdagangan. Salah satunya adalah industri kerajinan dari kayu, terutama kendang jimbe. Daerah yang cukup terkenal sebagai penghasil jimbe kendang adalah Desa Tanggung, Kecamatan Kepanjenkidul, Kota Blitar. Di daerah ini sebagian besar orang bekerja sebagai pengrajin kendang, juga merupakan pusat kerajinan bubut di Kota Blitar. Pada dasarnya, orang Blitar mendapatkan dari kegiatan ini, dalam hal ini orang tidak dapat memanfaatkan sisa kegiatan, terutama pemanfaatan abu pembakaran serbuk mahoni. Dari abu yang melimpah dari pembakaran kayu mahoni diharapkan dapat digunakan sebagai campuran tambahan beton ringan. Metode yang digunakan dalam penelitian ini menggunakan eksperimen laboratorium dan dipandu pada SNI 03-0691-2000. Campuran debu abu mahoni, dan mengetahui kekuatan tekan bata ringan dengan material abu debu sebagai bahan pasir tambahan 0%, 25%, 50%. Dari perbandingan ini dapat dihasilkan sebagai berikut: Penggunaan abu abu mahoni kering menambah bahan agregat halus (pasir) dalam campuran bata beton pada umur 7 hari untuk campuran 0% adalah 3,28 MPa. Pers yang kuat untuk substitusi 25% abu kayu lebih besar 26,37% yaitu 4,14 MPa dan objek uji dengan substitusi 50% turun 12,46% yaitu 2,87 MPa.


Author(s):  
A. Chernil'nik ◽  
D. El'shaeva ◽  
Y. Zherebtsov ◽  
N. Dotsenko ◽  
M. Samofalova

In conditions of dense urban development and a variety of engineering and geological conditions, the use of concretes with a combined aggregate of a rationally selected composition will solve the existing problem of reducing the mass of reinforced concrete structures of buildings and structures and maintaining the required strength and deformability. In this paper, studies have been carried out on the choice of a rational formulation of lightweight concrete based on expanded clay gravel, natural crushed stone and granulated blast furnace slag by varying the volume content of porous coarse aggregate and the volume content of fine aggregate in relation to the mixture. In total, 9 series of prototypes and 1 series of control samples are manufactured and tested. One series of samples includes three cubes with dimensions of 10x10x10 cm. All samples are tested in terms of density and compressive strength, the coefficient of constructive quality is determined. The results of the study shows that the introduction of expanded clay gravel into the composition of heavy concrete instead of part of the dense coarse aggregate and the replacement of the fine dense aggregate with granular blast furnace slag leads to an increase in the structural quality factor, that is, a decrease in the compressive strength of concrete is compensated for by an even more significant decrease in the density of the material, and means weight reduction. The increase in the coefficient of constructive quality of concrete based on expanded clay gravel, natural crushed stone and granulated blast-furnace slag in comparison with the control composition is 15.6 %.


Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4979 ◽  
Author(s):  
Marta Kadela ◽  
Alfred Kukiełka ◽  
Marcin Małek

The components of foamed concrete have a significant effect on its properties. Protein-based foamed concrete is used much more often. This study aims to assess the properties of foamed concrete with a density of around 500, 700, 800 and 1000 kg/m3 formed by using a synthetic polymer-based foaming agent. The distribution of pores, wet and dry density and compressive strengths were evaluated. In addition, the creep deformations of foamed concrete with different densities were measured. The difference in density of up to 170 kg/m3 for the highest densities was obtained. Foamed concrete with higher densities (700 and 800 kg/m3) showed similar characteristics of pores, which were different from those of samples with a density of 500 kg/m3. Compressive strength equal to 5.9 ± 0.2, 5.1 ± 0.2, 3.8 ± 0.3 and 1.4 ± 0.2 MPa was obtained for foamed concrete with a density of 500, 700, 800 and 1000 kg/m3, respectively. The obtained compressive strengths were higher than those found in the literature for the foamed concrete with the same densities. With increasing density, smaller creep deformations were obtained. Creep deformations were 509, 495 and 455 με for samples with densities of around 500, 700 and 1000 kg/m3 respectively. Deformation under long-term loading took place up to 90 days, regardless of the density of the foamed concrete.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Rachit Sharma

Purpose This paper presents the effects of replacing fine aggregate (FA) with waste foundry sand (WFS) in natural aggregate and construction waste aggregate concrete specimens without and with superplasticizer (SP), silica fume (SF) and fiber (F) to solve the disposal problems of various wastes along with saving the environment. This study aims to investigate the effect of construction waste, WFS along with additives on the stress-strain behavior and development of compressive strength with age. Design/methodology/approach The various concrete specimen were prepared in mix proportion of 1: 2: 4 (cement (C): sand: coarse aggregate). The water-cement ratio of 0.5 (decreased by 10% for samples containing SP) to grading 1: 2: 4 under air-dry condition was adopted in the preparation of concrete specimens. The compressive strength of various concrete specimen were noticed for 3, 7 and 28 days by applying load through universal testing machine. Findings Upon adding construction and demolition waste aggregates, the compressive strength of concrete after 28 days was comparable to that of the control concrete specimen. An enhancement in the value of compressive strength is perceived when FA is replaced with WFS to the extent of 10%, 20% and 30%. If both construction and demolition waste aggregate and WFS replacing FA are used, the compressive strength increases. When FA is interchanged with WFS in natural aggregate or construction demolition waste aggregate concrete including usage of SF or F, the compressive strength improves significantly. Further, when construction and demolition waste aggregate and WFS replacing FA including SP are used, the compressive strength improves marginally compared to that of control specimen. The rate of strength development with age is observed to follow similar trend as in control concrete specimen. Therefore, construction and demolition waste and or WFS can be used effectively in concrete confirming an improvement in strength. Originality/value The utilization of these wastes in concrete will resolve the problem of their disposal and save the environment.


Sign in / Sign up

Export Citation Format

Share Document