scholarly journals Magnetic properties of Cu and Al doped nano BaFe12O19 ceramics

2020 ◽  
Vol 10 (3) ◽  
pp. 5455-5459

The BaCuxFe12-xO19 and BaAlxFe12-xO19 (x = 0.0, 0.4, 0.8, 1.2) materials were prepared via sol-gel auto combustion technique. Further, the X-ray diffraction patterns suggested the formation of single phase hexagonal structure. This work is aimed to study the effect of diamagnetic and paramagnetic elements on magnetic characteristics of BaFe12O19. The results established that in the case of diamagnetic (Cu) substitution, the saturation magnetization was increased and decreased alternatively. Furthermore, it was noticed that the coercivity values of all doped samples were lower than those of undoped samples. But the replacement of Fe3+ with paramagnetic (Al) element led to a decrease in saturation magnetization and to a significant increase in the coercive field.

2016 ◽  
Vol 30 (19) ◽  
pp. 1650254 ◽  
Author(s):  
M. Burhan Shafqat ◽  
Omer Arif ◽  
Shahid Atiq ◽  
Murtaza Saleem ◽  
Shahid M. Ramay ◽  
...  

Barium hexaferrite nanoparticles are attractive for modern data storage and microwave devices due to their unique properties. Single phase synthesis of barium hexaferrite using sol–gel auto-combustion route was optimized by varying sintering temperature and time. X-ray diffraction confirmed single phase hexagonal crystal structure of the sample sintered at 1100[Formula: see text]C for 2 h. Crystallite size, as determined using Scherrer’s formula, was increased with the increase in sintering temperature while the porosity remained nearly unchanged. Field emission scanning electron microscope (FE-SEM) revealed that grain size was increased from nanometers to micrometers by rising the sintering temperature and the shape of particles was platelet-like hexagonal at 900[Formula: see text]C. Vibrating sample magnetometer (VSM) exhibited that saturation magnetization and coercivity increased with the increase of sintering temperature. Maximum saturation magnetization and coercivity values were 36.80 emu/g and 5365 Oe, respectively, for the sample sintered at 1100[Formula: see text]C for 2 h.


2020 ◽  
Vol 10 (2) ◽  
pp. 152-156 ◽  
Author(s):  
Muhammad Hanif bin Zahari ◽  
Beh Hoe Guan ◽  
Lee Kean Chuan ◽  
Afiq Azri bin Zainudin

Background: Rare earth materials are known for its salient electrical insulation properties with high values of electrical resistivity. It is expected that the substitution of rare earth ions into spinel ferrites could significantly alter its magnetic properties. In this work, the effect of the addition of Samarium ions on the structural, morphological and magnetic properties of Ni0.5Zn0.5SmxFe2-xO4 (x=0.00, 0.02, 0.04, 0.06, 0.08, 0.10) synthesized using sol-gel auto combustion technique was investigated. Methods: A series of Samarium-substituted Ni-Zn ferrite nanoparticles (Ni0.5Zn0.5SmxFe2-xO4 where x=0.00, 0.02, 0.04, 0.06, 0.08, 0.10) were synthesized by sol-gel auto-combustion technique. Structural, morphological and magnetic properties of the samples were examined through X-Ray Diffraction (XRD), Field-Emission Scanning Electron Microscope (FESEM) and Vibrating Sample Magnetometer (VSM) measurements. Results: XRD patterns revealed single-phased samples with spinel cubic structure up to x= 0.04. The average crystallite size of the samples varied in the range of 41.8 – 85.6 nm. The prepared samples exhibited agglomerated particles with larger grain size observed in Sm-substituted Ni-Zn ferrite as compared to the unsubstituted sample. The prepared samples exhibited typical soft magnetic behavior as evidenced by the small coercivity field. The magnetic saturation, Ms values decreased as the Sm3+ concentration increases. Conclusion: The substituted Ni-Zn ferrites form agglomerated particles inching towards more uniform microstructure with each increase in Sm3+ substitution. The saturation magnetization of substituted samples decreases with the increase of samarium ion concentration. The decrease in saturation magnetization can be explained based on weak super exchange interaction between A and B sites. The difference in magnetic properties between the samples despite the slight difference in Sm3+ concentrations suggests that the properties of the NiZnFe2O4 can be ‘tuned’, depending on the present need, through the substitution of Fe3+ with rare earth ions.


Cerâmica ◽  
2019 ◽  
Vol 65 (374) ◽  
pp. 274-281 ◽  
Author(s):  
S. S. Satpute ◽  
S. R. Wadgane ◽  
S. R. Kadam ◽  
D. R. Mane ◽  
R. H. Kadam

Abstract Y3+ substituted strontium hexaferrites having chemical composition SrYxFe12-xO19 (x= 0.0, 0.5, 1.0, 1.5) were successfully synthesized by sol-gel auto-combustion method. The structural and morphological studies of prepared samples were investigated by using X-ray diffraction technique, energy dispersive X-ray spectroscopy, field emission scanning electron microscopy (FE-SEM) and high-resolution transmission electron microscopy. The X-ray diffraction pattern confirmed the single-phase hexagonal structure of yttrium substituted strontium ferrite and the lattice parameters a and c increased with the substitution of Y3+ ions. The crystallite size also varied with x content from 60 to 80 nm. The morphology was studied by FE-SEM, and the grain size of nanoparticles ranged from 44 to 130 nm. The magnetic properties were investigated by using vibrating sample magnetometer. The value of saturation magnetization decreased from 49.60 to 35.40 emu/g. The dielectric constant decreased non-linearly whereas the electrical dc resistivity increased with the yttrium concentration in strontium hexaferrite.


Author(s):  
S. D. Balsure

Higher magnetic Mn doped Zn-Cr oxide nanoparticles with general compositional formula MxZn0.95-xCr0.05O have been synthesized by using sol-gel auto combustion technique. Room temperature X-ray diffraction (XRD) technique has been employed to study the structural and microstructural parameters of the as-prepared samples. XRD analysis confirms the phase purity and hexagonal wurtzite structure of all the samples. Replacement of Zn2+ ions by Mn2+ ions shifts peak positions slightly towards the lower angles which in turn expands the lattice lengths ‘a’ from 3.2487 to 3.2528 Å and ‘c’ from 5.2043 to 5.2118 Å. Crystallite size obtained from Scherrer equation was confirmed by Williamson – Hall (W-H) and size – strain plot methods (SSP). Both W-H and SSP methods reveals the tensile type strain for undoped sample and comprehensive type strain for Mn2+ doped samples. Magnetic properties were investigated by using vibrating sample magnetometer. Diluted ferromagnetic behaviour is observed for all the samples and saturation magnetization (MS) increases from 0.0514 to 0.1163 emu/gm. Two-probe technique was employed to understand the dielectric behaviour of the samples as a function of frequency. At lower frequency region, both dielectric constant () and dielectric loss tangent (tan ) shows higher values and decreases with the increasing applied frequency.


Materials ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2095 ◽  
Author(s):  
Jinpei Lin ◽  
Jiaqi Zhang ◽  
Hao Sun ◽  
Qing Lin ◽  
Zeping Guo ◽  
...  

Cobalt-chromium ferrite, CoCrxFe2−xO4 (x = 0–1.2), has been synthesized by the sol-gel auto-combustion method. X-ray diffraction (XRD) indicates that samples calcined at 800 °C for 3 h were a single-cubic phase. The lattice parameter decreased with increasing Cr concentration. Scanning electron microscopy (SEM) confirmed that the sample powders were nanoparticles. It was confirmed from the room temperature Mössbauer spectra that transition from the ferrimagnetic state to the superparamagnetic state occurred with the doping of chromium. Both the saturation magnetization and the coercivity decreased with the chromium doping. With a higher annealing temperature, the saturation magnetization increased and the coercivity increased initially and then decreased for CoCr0.2Fe1.8O4.


Symmetry ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 732 ◽  
Author(s):  
Abdul Raouf Al Dairy ◽  
Lina A. Al-Hmoud ◽  
Heba A. Khatatbeh

Samples of Barium Hexaferrite doped with Titanium BaFe12−xTixO19 with (x = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0) were synthesized by the sol–gel auto-combustion technique. The powdered samples were divided into two parts, one sintered at 850 °C and another sintered 1000 °C for 1 h and samples were characterized by different experimental techniques. The XRD patterns confirmed the presence of M-type hexaferrite phase. The sizes of the crystallites were calculated by the Scherer equation, and the sizes were in the range of 27–42 nm. Using the hysteresis loops, the saturation magnetization Ms, remanence (Mr), the relative ratio (Mr/Ms), and the coercivity (Hc) were calculated. The study showed that the saturation magnetization (Ms) and remanence (Mr) decreased with increasing titanium concentration and were in the range from 44.65–17.17 emu/g and 23.1–7.7 emu/g, respectively. The coercivity (Hc) ranged between 0.583 and 4.51 (kOe). The magnetic properties of these Barium Hexaferrite doped with Titanium indicated that they could be used in the recording equipment and permanent magnets.


2020 ◽  
Vol 34 (06) ◽  
pp. 2050033 ◽  
Author(s):  
Mohd Saleem ◽  
S. Tiwari ◽  
M. Soni ◽  
N. Bajpai ◽  
Ashutosh Mishra

Titanium ([Formula: see text])-doped nanoparticles of the type [Formula: see text] [[Formula: see text], [Formula: see text]] are reported in this study. The samples were synthesized by citric acid assisted sol–gel auto combustion (SGAC) method. The samples are characterized by X-ray diffraction (XRD), Raman, Field emission scanning electron microscopy (FESEM), Energy dispersive analysis of X-rays (EDAX) and Fourier transform infra-red (FTIR) techniques for structural studies. Further, for optical properties, UV-Vis technique has been used. In addition, samples were studied for dielectric properties. Room-temperature XRD data study reveals the sample formation with wurtzite hexagonal structure exhibiting space group [Formula: see text]mc also confirmed from Rietveld refinement of XRD data. Raman spectra displays characteristic active phonon modes in pristine [Formula: see text] and doped [Formula: see text]. UV-Vis diffused reflectance spectroscopy analysis infer bandgap values of 3.14 and 3.12 eV for [Formula: see text] and [Formula: see text], respectively. The dielectric studies confirmed high dielectric constant for [Formula: see text] compared to pristine [Formula: see text]. A non-Debye character with spread of relaxation times was witnessed from impedance study.


2014 ◽  
Vol 6 (3) ◽  
pp. 399-406 ◽  
Author(s):  
M. Z. Ansar ◽  
S. Atiq ◽  
K. Alamgir ◽  
S. Nadeem

Magnetite nanoparticles have been prepared by using sol-gel auto combustion technique. The samples are prepared by using different concentrations of fuel. Structural characterization has been done using X-Ray diffraction technique and it was observed that fuel concentration can affect the structural properties of Magnetite nanoparticles. The dielectric properties for all the samples such as dielectric constant (??), dielectric tangent loss (tan ?) and dielectric loss factor (??) have been studied as a function of frequency and temperature in the range 10 Hz–20 MHz  and it was found that these nanoparticles can be used in microwave devices because of their good dielectric behavior. © 2014 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved. doi: http://dx.doi.org/10.3329/jsr.v6i3.17938 J. Sci. Res. 6 (3), 399-406 (2014)


2012 ◽  
Vol 512-515 ◽  
pp. 1434-1437
Author(s):  
Xing Ao Li ◽  
Peng Li ◽  
Yong Tao Li ◽  
Jian Ping Yang ◽  
Qiu Fei Bai ◽  
...  

Bi0.95Eu0.05Fe0.95Co0.05O3 Nanoparticles sample was prepared by sol-gel process. The microstructure of samples was analysised by X-ray diffraction(XRD), the result indicated that it was the single phase rhombohedral perovskite structure. The morphology of samples was measured by scanning electron microsopy(SEM), the SEM photograph of samples indicated that the nanoparticles of Bi0.95Eu0.05Fe0.95Co0.05O3 sample were small than that of BiFeO3. The valence states of Fe ions in the samples was analysised by the X-ray absorption spectroscopy(XAS). The XAS of Fe2p showed that it was the mixed valence states (Fe2+ and Fe3+) of Fe ions in samples, and the binding energy of Bi0.95Eu0.05Fe0.95Co0.05O3 was bigger than that of BiFeO3.The magnetic characteristics of the samples were measured by vibrating sample magnetometer (VSM),the results showed that the weak metamagnetism were obtained from clear hysteresis loop and the magnetic saturation reached 0.408emu/g,compared with BiFeO3 sample, the magnetic properties were significantly enhanced.


2020 ◽  
Vol 126 (7) ◽  
Author(s):  
Mohammad Abu Haija ◽  
Mariem Chamakh ◽  
Israa Othman ◽  
Fawzi Banat ◽  
Ahmad I. Ayesh

Abstract Spinel ferrite nanoparticles can be easily retrieved and utilized for multiple cycles due to their magnetic properties. In this work, nanoparticles of a ZnxCu1-xFe2O4 composition were synthesized by employing a sol–gel auto-combustion technique. The morphology, composition, and crystal structure were examined using scanning electron microscopy, infrared spectroscopy, and X-ray diffraction. The produced nanoparticles are in the range of 30–70 nm and manifest spinel cubic structure. The nanoparticles were tested for their sensitivity to H2 and H2S gases, and the Cu-based spinel ferrite nanoparticles were found the most sensitive and selective to H2S gas. Their enhanced response to H2S gas was attributed to the production of metallic CuFeS2 that manifest higher electrical conductivity as compared with CuFe2O4. The fabricated sensors are functional at low temperatures, and consequently, they need low operational power. They are also simple to fabricate with appropriate cost.


Sign in / Sign up

Export Citation Format

Share Document