scholarly journals Kinetics and Thermodynamic Modeling for CO2 Capture Using NiO Supported Activated Carbon by Temperature Swing Adsorption

2021 ◽  
Vol 12 (3) ◽  
pp. 4200-4219

Solid sorbent from functionalized activated carbon (AC) could enhance the adsorption capacity in CO2 capture. This study emphasizes cyclic CO2 capture using NiO functionalized AC. Different loadings of NiO impregnated on AC were synthesized. This work showed that the most efficient adsorbent of 0.05NiO/AC exhibits an adsorption capacity of 55.464 mg/g at the adsorption temperature of 30 °C by using the temperature swing adsorption method. A slight loss of adsorption capacity at 0.28 % for a five cycles CO2 capture indicated consistency potential for large scales application. The adsorbent exhibited a slightly lower surface area compared to AC, but the presence of NiO improved the adsorption capacity by chemisorption phenomena. The NiO acts as the basic site for CO2 capture. Meanwhile, AC as support could increase the surface area of active sites and reduce the sintering effect of the NiO. It was found that various adsorption temperatures had a good correlation with the pseudo-second-order kinetic model. The magnitude of the sorption process was evaluated by the activation energy of 48.09 kJ/mol, which implies a chemisorption process at various adsorption temperatures. Thermodynamic studies explained the CO2 adsorption process for this study was found to be a spontaneous and endothermic process.

2021 ◽  
Author(s):  
◽  
Stephen Okiemute Akpasi

Global climate change is one of the major threats facing the world today and can be due to increased atmospheric concentrations of greenhouse gases (GHGs), such as carbon dioxide (CO2). There is also an immediate need to reduce CO2 emissions, and one of the potential solutions for reducing CO2 emissions is carbon capture and storage (CCS). This work investigated the performance assessment of kaolinite and activated carbon (AC) adsorbent for CO2 capture. In particular, the effect of operating parameters such as temperature, bed height, inlet gas flow rate etc. on CO2 adsorption behaviour of the adsorbents was also investigated. Extensive research on the development of adsorbents that can adsorb large amounts of CO2 with low energy consumption has recently been carried out. In CO2 adsorption technology, the challenge is to develop an adsorbent that is not only non-toxic, eco-friendly, and cost-effective, but also has the potential to extract CO2 gas from a mixed gas stream selectively and effectively. Due to the possibility of a potential adsorbent due to its low cost, rich natural abundance and high mechanical and chemical stability, this study proposes kaolinite. As the presence of clay minerals in soils serves as a pollutant collector to enhance the atmosphere, kaolinite has the potential to be an efficient adsorbent for CO2 capture. Kaolinite was investigated as an adsorbent in this research to confirm if it is suitable for CO2 capture. Kaolinite/activated carbon composite adsorbents were synthesized. Sugarcane bagasse was used in preparing the activated carbon (AC). ZnCl2 was impregnated onto sugarcane bagasse during the preparation of activated carbon (AC) to improve the physical properties (surface area, pore size and pore volume) and the CO2 adsorption capacity of the activated carbon (AC) adsorbent developed. The materials were characterized and tested for CO2 adsorption (activated carbon and kaolinite). BET, FTIR and SEM studies were used to classify the adsorbents for their surface area and pore properties, functional groups, and surface morphology, respectively. BET analysis was conducted and the pore volume, pore size and surface area of the adsorbent materials were reported. Functional groups were actively present in the adsorption process. This was verified using FTIR spectroscopy. The kaolinite adsorbent was not feasible for CO2 capture. BET, SEM, and custom-built CO2 adsorption equipment have confirmed this. In contrast to literature, the CO2 adsorption capacity of kaolinite was low. This is due to the fact that kaolinite used in this study is not suitable as adsorbent for CO2 capture as they exhibited a low CO2 adsorption capacity. The results obtained in this study show that temperature, bed height and inlet gas flow rate influenced the adsorption behaviour of activated carbon (AC), kaolinite and kaolinite/activated carbon composite adsorbent during CO2 capture. At 30 0C, activated carbon (AC) exhibited an adsorption capacity of 28.97 mg CO2/g, the highest capacity among all the adsorbents tested. Kaolinite-activated carbon composite adsorbent offered CO2 adsorption capacities of 18.54 mg CO2/g. Kaolinite provides the lowest capacity of 12.98 mg CO2/g. In conclusion, this research verified that CO2 adsorption with kaolinite and activated carbon is favoured at low temperatures, low operating CO2 flowrates and high column bed height.


2014 ◽  
Vol 63 ◽  
pp. 2351-2358 ◽  
Author(s):  
Ming-Wei Yang ◽  
Nai-chi Chen ◽  
Chih-hsiang Huang ◽  
Yi-ting Shen ◽  
Hong-sung Yang ◽  
...  

Author(s):  
Rafael Morales-Ospino ◽  
Vitória N. Santos ◽  
Antônio R. A. Lima ◽  
A. Eurico B. Torres ◽  
Enrique Vilarrasa-García ◽  
...  

2021 ◽  
Author(s):  
Pierre Hovington ◽  
Omid Ghaffari-Nik ◽  
Laurent Mariac ◽  
Andrew Liu ◽  
Brett Henkel ◽  
...  

2021 ◽  
Vol 15 (2) ◽  
pp. 131-144
Author(s):  
Chunjiang Jin ◽  
Huimin Chen ◽  
Luyuan Wang ◽  
Xingxing Cheng ◽  
Donghai An ◽  
...  

In this study, aspen wood sawdust was used as the raw material, and Fe(NO3)3 and CO2 were used as activators. Activated carbon powder (ACP) was produced by the one-step physicochemical activation method in an open vacuum tube furnace. The effects of different mass ratios of Fe(NO3)3 and aspen wood sawdust on the pore structure of ACP were examined under single-variable experimental conditions. The mass ratio was 0–0.4. The detailed characteristics of ACP were examined by nitrogen adsorption, scanning electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy. The adsorption capacity of ACP was established by simulating volatile organic compounds (VOCs) using ethyl acetate. The results showed that ACP has a good nanostructure with a large pore volume, specific surface area, and surface functional groups. The pore volume and specific surface area of Fe-AC-0.3 were 0.26 cm3/g and 455.36 m2/g, respectively. The activator played an important role in the formation of the pore structure and morphology of ACP. When the mass ratio was 0–0.3, the porosity increased linearly, but when it was higher than 0.3, the porosity decreased. For example, the pore volume and specific surface area of Fe-AC-0.4 reached 0.24 cm3/g and 430.87 m2/g, respectively. ACP presented good VOC adsorption performance. The Fe-AC-0.3 sample, which contained the most micropore structures, presented the best adsorption capacity for ethyl acetate at 712.58 mg/g. Under the action of the specific reaction products nitrogen dioxide (NO2) and oxygen, the surface of modified ACP samples showed different rich C/O/N surface functional groups, including C-H, C=C, C=O, C-O-C, and C-N.


Author(s):  
Ali H. Jawad ◽  
Ahmed Saud Abdulhameed ◽  
Noor Nazihah Bahrudin ◽  
Nurul Nadiah Mohd Firdaus Hum ◽  
S. N. Surip ◽  
...  

Abstract In this work, sugarcane bagasse waste (SBW) was used as a lignocellulosic precursor to develop a high surface area activated carbon (AC) by thermal treatment of the SBW impregnated with KOH. This sugarcane bagasse waste activated carbon (SBWAC) was characterized by means of crystallinity, porosity, surface morphology and functional groups availability. The SBWAC exhibited Type I isotherm which corresponds to microporosity with high specific surface area of 709.3 m2/g and 6.6 nm of mean pore diameter. Further application of SBWAC as an adsorbent for methylene blue (MB) dye removal demonstrated that the adsorption process closely followed the pseudo-second order kinetic and Freundlich isotherm models. On the other hand, thermodynamic study revealed the endothermic nature and spontaneity of MB dye adsorption on SBWAC with high acquired adsorption capacity (136.5 mg/g). The MB dye adsorption onto SBWAC possibly involved electrostatic interaction, H-bonding and π-π interaction. This work demonstrates SBW as a potential lignocellulosic precursor to produce high surface area AC that can potentially remove more cationic dyes from the aqueous environment.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Feng Wang ◽  
Lu Yu ◽  
Youhua Li ◽  
Dengfa Huang

Support-free cross-linked polyethyleneimine sorbent (CPEI) for CO2 capture was evaluated as the regenerable sorbent. The total amines available for the CO2 capture on CPEI were determined by the polyethyleneimine/glutaraldehyde ratio for the synthesis of CPEI. The CO2 capacity of CPEI in the slurry bubble column reactor reached 4.92 mmol/g, which is 1.97 times higher than that obtained under anhydrous conditions. The adsorption kinetics of CPEI in the reactor were investigated in terms of the CPEI amount, the CO2 fraction, the gas flow rate, temperature, and the total amines available. The experimental breakthrough curves for the sorbent were well-fitted with a fractional-order kinetic model. The modeling analysis found the influence of diffusion resistance on the adsorption is more significant than that of the driving force. The CO2 capacity of CPEI remained almost constant during the temperature swing adsorption/desorption cycles.


Author(s):  
Nawwarah Mokti ◽  
Azry Borhan ◽  
Siti Nur Azella Zaine ◽  
Hayyiratul Fatimah Mohd Zaid

The use of an activating agent in chemical activation of activated carbon (AC) production is very important as it will help to open the pore structure of AC as adsorbents and could enhance its performance for adsorption capacity. In this study, a pyridinium-based ionic liquid (IL), 1-butylpyridinium bis(trifluoromethylsulfonyl) imide, [C4Py][Tf2N] has been synthesized by using anion exchange reaction and was characterized using few analyses such as 1H-NMR, 13C-NMR and FTIR. Low-cost AC was synthesized by chemical activation process in which rubber seed shell (RSS) and ionic liquid [C4Py][Tf2N] were employed as the precursor and activating agent, respectively. AC has been prepared with different IL concentration (1% and 10%) at 500°C and 800°C for 2 hours. Sample AC2 shows the highest SBET and VT which are 392.8927 m2/g and 0.2059 cm3/g respectively. The surface morphology of synthesized AC can be clearly seen through FESEM analysis. A high concentration of IL in sample AC10 contributed to blockage of pores by the IL. On the other hand, the performance of synthesized AC for CO2 adsorption capacity also studied by using static volumetric technique at 1 bar and 25°C. Sample AC2 contributed the highest CO2 uptakes which is 50.783 cm3/g. This current work shows that the use of low concentration IL as an activating agent has the potential to produce porous AC, which offers low-cost, green technology as well as promising application towards CO2 capture.


2012 ◽  
Vol 518-523 ◽  
pp. 2099-2103
Author(s):  
Guang Zhou Qu ◽  
Hai Bing Ji ◽  
Ran Xiao ◽  
Dong Li Liang

The activated carbon fiber (ACF) was treated by different concentration nitric acid (HNO3) and hydrogen peroxide (H2O2) oxidization to enhance its adsorption capacity to hexavalent chromium (Cr6+) ion. The adsorption amount and adsorption kinetics of Cr6+ion on ACFs, and the surface chemical groups were investigated. The results showed that the modified ACFs with 1% HNO3and 10% H2O2had a better adsorption capacity, respectively. The adsorption amount of ACFs was affected strongly solution pH value, and decreased significantly with increasing of the pH value. The adsorption kinetics indicated that the adsorption rates of Cr6+ ion on different modified ACFs were well fitted with the pseudo-second-order kinetic model. After 1% HNO3and 10% H2O2modification, respectively, the total acidic oxygen-containing groups on ACFs surface had an increase obviously, which might be enhance the adsorption amount of Cr6+ion on ACFs.


Sign in / Sign up

Export Citation Format

Share Document