scholarly journals Mathematical model of the process of drying fine dispersed materials under the influence of alternating electric current

Author(s):  
O.V Zamytskyi ◽  
N.O Holiver ◽  
N.V Bondar ◽  
S.O Kradozhon

Purpose. Establishing the dependences and determining rational parameters of the process of drying fine materials by direct influence of an electric current. Methodology. In the work, theoretical, analytical, empirical, and experimental methods as well as methods of mathematical statistics are used. Mathematical modeling of the process occurring during drying of finely dispersed materials by direct influence of alternating current is carried out. Findings. As a result of the research on the basis of physical representations of the process of drying capillary-porous material, a mathematical model is designed connecting temperature and moisture content in a plate from capillary-porous material by means of equations of mathematical physics. Originality. For the first time dependence has been obtained on the temperature and moisture content of the time and spatial coordinates of drying by passing an electric current through the layer of moist capillary-porous material, a feature which is both simultaneous accounting of thermal and diffusion processes in the material that can increase the accuracy of calculations and establish rational parameters of drying. Practical value. The obtained dependences are used when developing calculation methods and designing an industrial drying plant.

Author(s):  
Yuriy Abramov ◽  
Oleksii Basmanov ◽  
Yaroslav Kozak

This paper substantiates the pulse method for determining the time parameter for fire detectors with a thermoresistive sensing element ‒ the time constant. The method is based on using the Joule-Lenz effect, which manifests itself when an electric current pulse passes through the thermoresistive sensing element of fire detectors. Thermal processes in such a sensing element are described by a mathematical model that belongs to the class of equations of mathematical physics. The solution to the differential equation of this class was derived using the Hankel integral transformation and is represented as a series relative to the Bessel functions. The resulting solution is used to construct a mathematical model of a thermoresistive sensing element in the form of a transfer function, which takes the form of the transfer function of the inertial link. To trigger the thermoresistive sensing element of fire detectors, a single pulse of electric current in the shape of a rectangular triangle is used. The integral Laplace transformation was applied to mathematically describe the response of a thermoresistive sensing element to the thermal effect of such a test influence. To obtain information about the time parameter of fire detectors with a thermoresistive sensing element, the ratio of its output signals is used, which are measured in the a priori defined moments. A two-parametric expression was built to determine the time parameter of fire detectors; a verbal interpretation of the pulse method to determine it was provided. The implementation of this method ensures the invariance of the time parameter of fire detectors with a thermoresistive sensing element relative to the amplitude of a single pulse of an electric current, as well as relative to the parameter that is included in its transfer coefficient.


Author(s):  
F. Seehofer ◽  
W. Schulz

AbstractThe phenomenon of the smoulder stream flowing through the cigarette during smouldering and during the puff intervals is demonstrated for the first time and its dependence upon physical conditions is examined. The volume of the smoulder stream can amount up to 180 ml per cigarette. Increasing draw resistance of the cigarette and augmenting moisture content of the tobacco as well as perforation of the cigarette paper have a decreasing effect on volume and velocity of the smoulder stream. The porosity of the cigarette paper has no perceptible influence. The spatial position of the cigarette affects volume and velocity of the smoulder stream. The influence exercised by the smoulder stream on the yields of total condensate, nicotine, phenols, aldehydes, and acroleine when the cigarette tip is open during the puff intervals is determined. When the moisture contents of the tobacco were extremely high, yield decreases reaching 50 % could be observed.


2016 ◽  
Vol 10 (10) ◽  
pp. 133
Author(s):  
Mohammad Ali Nasiri Khalili ◽  
Mostafa Kafaei Razavi ◽  
Morteza Kafaee Razavi

Items supplies planning of a logistic system is one of the major issue in operations research. In this article the aim is to determine how much of each item per month from each supplier logistics system requirements must be provided. To do this, a novel multi objective mixed integer programming mathematical model is offered for the first time. Since in logistics system, delivery on time is very important, the first objective is minimization of time in delivery on time costs (including lack and maintenance costs) and the cost of purchasing logistics system. The second objective function is minimization of the transportation supplier costs. Solving the mathematical model shows how to use the Multiple Objective Decision Making (MODM) can provide the ensuring policy and transportation logistics needed items. This model is solved with CPLEX and computational results show the effectiveness of the proposed model.


2013 ◽  
Vol 19 (3-4) ◽  
pp. 467-474 ◽  
Author(s):  
Courtney M. Creecy ◽  
Christine F. O'Neill ◽  
Bernard P. Arulanandam ◽  
Victor L. Sylvia ◽  
Christopher S. Navara ◽  
...  

Author(s):  
André Parent

Two hundred years ago, Giovanni Aldini published a highly influential book that reported experiments in which the principles of Luigi Galvani (animal electricity) and Alessandro Volta (bimetallic electricity) were used together for the first time. Aldini was born in Bologna in 1762 and graduated in physics at the University of his native town in 1782. As nephew and assistant of Galvani, he actively participated in a series of crucial experiments with frog's muscles that led to the idea that electricity was the long-sought vital force coursing from brain to muscles. Aldini became professor of experimental physics at the University of Bologna in 1798. He traveled extensively throughout Europe, spending much time defending the concept of his discreet uncle against the incessant attacks of Volta, who did not believe in animal electricity. Aldini used Volta's bimetallic pile to apply electric current to dismembered bodies of animals and humans; these spectacular galvanic reanimation experiments made a strong and enduring impression on his contemporaries. Aldini also treated patients with personality disorders and reported complete rehabilitation following transcranial administration of electric current. Aldini's work laid the ground for the development of various forms of electrotherapy that were heavily used later in the 19th century. Even today, deep brain stimulation, a procedure currently employed to relieve patients with motor or behavioral disorders, owes much to Aldini and galvanism. In recognition of his merits, Aldini was made a knight of the Iron Crown and a councillor of state at Milan, where he died in 1834.


2021 ◽  
pp. 33-39
Author(s):  
Makar S. Stepanov ◽  
rina G. Koshlyakova

The accelerated heat treatment during steel products hardening technology has been investigated. The possibility of measuring the temperature of steel products by thermoelectric platinum-platinum-rhodium thermocouple under microarc heating conditions is analyzed. During the experiments, working junctions of two S-type thermocouples: working and standard, were coined into the sample surface at the same level. The free thermocouples ends were connected to a digital multimeter and a personal computer. It was determined that 5 factors affect the measurement results: the electric current strength in the circuit, carbon powder, calibration, number of repeated measurement cycles, and a thermocouple copy. When planning the experiment, the concept of conducting a step-by-step nested experiment was used. Variance analysis method was used to process the experimental results. The measurement method precision parameters were calculated: repeatability and reproducibility. A linear mathematical model linking the measurement method reproducibility index with the measured temperature value has been obtained. A linear mathematical model is obtained that relates the reproducibility index of the measurement method to the measured temperature value. A measuring system for the experimental determination of the temperature of a steel sample is proposed and its application is justified for different electric current densities on the sample surface and varying duration of microarc heating. The possibilities of selecting and controlling the microarc heating modes depending on the required temperature of the heat treatment of the steel product are determined.


2021 ◽  
Vol 3 (102) ◽  
pp. 55-67
Author(s):  
VARVARA E. RUMYANTSEVA ◽  
SVETLANA A. LOGINOVA ◽  
NATALIA E. KARTSEVA

In the aquatic environment, biocorrosion is an important factor affecting the reliability and durability of concrete structures. The destruction of cement concretes during biological corrosion is determined by the processes of mass transfer. The article presents the development of a calculated mathematical model of liquid corrosion in cement concrete, taking into account the biogenic factor. For the first time, a model of mass transfer in an unbounded two-layer plate is considered in the form of differential equations of parabolic type in partial derivatives with boundary conditions of the second kind at the interface between concrete and liquid and of the fourth kind at the interface between concrete and biofilm. The results of a numerical experiment are presented to study the influence of the coefficients of mass conductivity and mass transfer on the kinetics and dynamics of the process.


2017 ◽  
Vol 27 (01) ◽  
pp. 1730003 ◽  
Author(s):  
Jorgelina Ramos ◽  
Stephen Lynch ◽  
David Jones ◽  
Hans Degens

This paper presents examples of hysteresis from a broad range of scientific disciplines and demonstrates a variety of forms including clockwise, counterclockwise, butterfly, pinched and kiss-and-go, respectively. These examples include mechanical systems made up of springs and dampers which have been the main components of muscle models for nearly one hundred years. For the first time, as far as the authors are aware, hysteresis is demonstrated in single fibre muscle when subjected to both lengthening and shortening periodic contractions. The hysteresis observed in the experiments is of two forms. Without any relaxation at the end of lengthening or shortening, the hysteresis loop is a convex clockwise loop, whereas a concave clockwise hysteresis loop (labeled as kiss-and-go) is formed when the muscle is relaxed at the end of lengthening and shortening. This paper also presents a mathematical model which reproduces the hysteresis curves in the same form as the experimental data.


2019 ◽  
Vol 19 (03) ◽  
pp. 1950027 ◽  
Author(s):  
Igor Planinc ◽  
Simon Schnabl

This paper focuses on development of a new mathematical model and its analytical solution for buckling analysis of elastic columns weakened simultaneously with transverse open cracks and partial longitudinal delamination. Consequently, the analytical solution for buckling loads is derived for the first time. The critical buckling loads are calculated using the proposed analytical model. A parametric study is performed to investigate the effects of transverse crack location and magnitude, length and degree of partial longitudinal delamination, and different boundary conditions on critical buckling loads of weakened columns. It is shown that the critical buckling loads of weakened columns can be greatly affected by all the analyzed parameters. Finally, the presented results can be used as a benchmark solution.


Sign in / Sign up

Export Citation Format

Share Document